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Introduction

During the years 1902 to 1907, at the time Albert Einstein was working in the Swiss
Patent Office, Charles Howard Hinton, a little-known Englishman crucial to this
study, was employed in the United States Patent Office in Washington, D.C. Hinton
had published his last major book, The Fourth Dimension, in 1904, three years before
his death at age fifty-four. Einstein, on the other hand, was at the threshold of his
own life’s work, in 1905 formulating the first of his many contributions to science,
the Special Theory of Relativity. In the long run, Einstein’s influence was to be far
greater than that of Hinton, revolutionizing scientific theory and, after about 1919,
the world view of laymen as well. However, in the first two decades of the twentieth
century, the idea promulgated by Hinton and many others that space might possess
a higher, unseen fourth dimension was the dominant intellectual influence.

The complex spatial possibilities suggested by a fourth dimension, as well as by the
curved space of non-Euclidean geometry, were the outgrowth of developments in early
nineteenth-century geometry. Popularized during the later years of the century, these
notions had begun to capture the public’s imagination by the turn of the century in
much the same way Black Holes have done in recent years. Like a Black Hole, “the
fourth dimension” possessed mysterious qualities that could not be completely under-
stood, even by scientists themselves. Yet, the impact of “the fourth dimension” was
far more comprehensive than that of Black Holes or any other more recent scientific
hypothesis except Relativity Theory after 1919. Emerging in an era of dissatisfaction
with materialism and positivism, “the fourth dimension” gave rise to entire idealist
and even mystical philosophical systems, such as that of Hinton. Only the popular-
ization of Einstein’s General Theory of Relativity, with its redefinition of the fourth
dimension as time instead of space,! brought an end to this era in which artists, writers,
and musicians believed they could express higher spatial dimensions.

Besides the artists who are the subject of this study, the list of prominent figures
interested in the fourth dimension is an impressive one. Between Dostoevsky’s ref-
erences to higher dimensions and non-Euclidean geometry in The Brothers Karamazowv
of 1880 and P. G. Wodehouse’s offhanded use of the term in “The Amazing Hat
Mystery” of 1922, the fourth dimension attracted the notice of such literary figures as
H. G. Wells, Oscar Wilde, Joseph Conrad, Ford Madox Ford, Marcel Proust, and
Gertrude Stein.? Among musicians, Alexander Scriabin, Edgar Varése, and George

! See Appendix A for the principles of Relativity the timing of its popularization.
Theory in the various phases of its development and 2 Except for Dostoevsky and Wodehouse, all of these
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Antheil were actively concerned with the fourth dimension, and were encouraged to
make bold innovations in the name of a higher reality,

For early twentieth-century artists “the fourth dimension” and non-Euclidean ge-
ometry had an equally liberating effect. In the past, art historians have most often
ignored or dismissed references to either of the “new geometries” in the writings of
modern artists and critics.’ Without a knowledge of the widespread popular interest
in these spatial concepts, historians tended to misinterpret the terms as purely math-
ematical or purely mystical, missing the variety of views between the two extremes,
When understood in their original context, however, “the fourth dimension” and
non-Euclidean geometry are far from being the “scourge of every history of modern
painting,” as they have been termed. Instead, these concepts open the door to our
understanding more fully the goals of many seminal artists of the early twentieth
century.

That references in Cubist literature to higher dimensions and to non-Euclidean
geometry had nothing to do with Einsteinian Relativity Theory was first suggested by
John Adkins Richardson and myself in the early 1970s. My historical arguments against
such a connection, presented in a 1971 Art Quarterly article,’ are in Appendix A
below, which includes additional information on the subject as well. In his 1971 text
Modern Art and Scientific Thought Richardson supported his case by citing the works
of ].C.F. Zéllner and H. G. Wells as proof that the term the fourth dimension was used
independently of Relativity Theory in this period.® Although my Art Quarterly article

authors are discussed in the pages that follow. Dos-
toevsky’s Ivan Karamazov refers to higher dimensions
and non-Euclidean geometry in the course of his spec-
ulation on the existence of God (Fyodor Dostoyevsky,
The Brothers Karamazov, trans. Constance Garnett [New
York: New American Library, 1957], pp. 216-17). For
Wodehouse’s tale, see P. G. Wodehouse, Young Men
in Spats (Harmondsworth, England: Penguin Books,
1971), pp. 68-86. The magical properties of higher
spatial dimensions, which fascinated H. G. Wells and,
before him, Lewis Carroll, have continued to stimulate
writers of science fiction. See, for example, Robert A.
Heinlein, “ ‘—And He Built a Crooked House—," "
Astounding Science Fiction, February 1941; reprinted in
Analog’s Golden Anniversary Anthology, ed. Stanley
Schmidt (New York; Davis Publications, 1980), pp.
95-110. For an overview of this body of literature,
which continued to grow even after the popularization
of Relativity Theory, see Pierre Versins, Encyclopédie
de I'wiopie, des voyages extraordinaires, et de science-fiction
(Lausanne: L'Age d’'Homme, 1972).

» “New geometry” is used throughout this study as
a relative term, in that the n-dimensional and non-
Euclidean geometries, which seemed so novel and
modern at the turn of the century, had actually existed
since the first half of the nineteenth century.

4 William Rubin, “Reflexions on Marcel Du-
champ,” Art International, tv (1 Dec. 1960), 52. A
recent sign of how the new geometries are increasingly
recognized for their role in the evolution of modern
art is the essay by Lucy Adelman and Michael Comp-
ton, “Mathematics in Early Abstract Art,” in Towards
a New Art: Essays on the Background to Abstract Art,
ed. Michael Compton (London: The Tate Gallery,
1980), pp. 64-89.

5 Henderson, “A New Facet of Cubism: ‘The Fourth
Dimension’ and ‘Non-Euclidean Geometry’ Reinter-
preted,” The Art Quarterly, xxxiv (Winter 1971), 410-
33.

6 See Richardson, Modem Art and Scientific Thought
(Urbana: University of Illinois Press, 1971), ch. 5,
“Cubism and Logic.” His chapter had been published
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presented the first extended discussion of the popular tradition of “the fourth dimen-
sion” and non-Euclidean geometry as an outgrowth of nineteenth-century geometry,
several other art historians, in addition to Richardson, had earlier touched upon one
or another of its manifestations. Christopher Gray in Cubist Aesthetic Theories of 1953
had noted the mystical writings of P. D. Ouspensky on the subject.” Similarly, Apol-
linaire scholars LeRoy C. Breunig and Jean-Claude Chevalier in 1965 had mentioned
the 1909 Scientific American essay contest on the fourth dimension, as well as the 1912
Comoedia serial Voyage au pays de la quatriéme dimension.® Nevertheless, only one
historian of modern art, Meyer Schapiro, seems to have sensed the broader philo-
sophical implications of the new geometries in the early twentieth century. As early
as his 1937 essay on the “Nature of Abstract Art” Schapiro noted, “Just as the discovery
of non-Euclidean geometry gave a powerful impétus to the view that mathematics was
independent of existence, so abstract painting cut at the roots of the classic ideas of
artistic imitation.”®

My reinterpretation of Cubist references to a fourth dimension and to non-Euclidean
geometry was expanded in a 1975 Ph.D. dissertation to include Marcel Duchamp, as
well as a number of artists working outside of France during the period 1900 to 1930.1°
The present text is a more fully developed version of that work, with a new chapter
added on American art. France, however, remains the central focus of this study as
well, for it was among the Cubists that the first and most coherent art theory based
on the new geometries was developed. From Cubism (and the speculation of Duchamp)
successive artistic explorations of the subject occurred in Italy, America, Russia and
Holland. The varying approaches of artists in each of these nations toward the new
geometries and their frequent alterations of the original prewar Cubist ideas on the
subject provide valuable new insights into the character of a number of modern
movements.

As wide ranging as the present study is, the absence of two avant-garde centers,
England and Germany, may initially raise questions. Yet this omission was dictated
by my requirement that for each artist or movement to be examined there be a body
of writings on the fourth dimension and non-Euclidean geometry by an artist and his
contemporaries. Thus, while the fourth dimension was certainly well known in England

in much the same form in France in 1969 as “Un Mythe
de la critique moderne: Le Cubisme et la quatriéme
dimension,” Diogéne, no. 65 (Jan.-Mar. 1969), pp.
103-15.

7 See Gray, Cubist Aesthetic Theories (Baltimore: Johns
Hopkins Press, 1953), p. 85 and n. 74 to p. 85.

8 Breunig and Chevalier, Guillaume Apollinaire: Les

Peintres Cubistes (Paris: Hermann, 1965), p. 105.

9 Schapiro, “Nature of Abstract Art,” Marxist Quar-
terly, 1 (Jan.—Mar. 1937), 78.

10 Henderson, “The Artist, ‘The Fourth Dimen-
sion,” and Non-Euclidean Geometry 1900-1930: A Ro-
mance of Many Dimensions,” Ph.D. dissertation, Yale
University, 1975.
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and Germany, it does not figure prominently in Vorticist or German Expressionist
literature. !

Germany, and particularly the Russian-born leader of the Munich Blaue Reiter
group, Wassily Kandinsky, proved the most surprising in this regard. As is discussed
in Chapter 5, Kandinsky was clearly aware of the fourth dimension and shared an anti-
materialist stance with his Russian colleagues that would have made the fourth di-
mension a logical part of his artistic theory. The term, however, does not appear in
Kandinsky’s published writings, which instead bear the stamp of Rudolf Steiner’s
Christian Theosophy. In fact, in Germany it may have been the strong influence of
Steiner that overwhelmed “the fourth dimension” with a compatible but more mystical
and elaborate philosophy.!2

Among German Expressionist painters there may also have been a conscious rejec-
tion of a fourth dimension identified with cerebral French Cubism. Significantly, the
Cubist painter who had the most widespread impact on Germany, Robert Delaunay,
was not a major advocate of the fourth dimension.”* Thus, Franz Marc, cofounder
with Kandinsky of the Blaue Reiter group and an admirer of Delaunay, documented
his own interest in the fourth dimension only in 1916. In a letter to his wife of 24
January 1916, Marc wrote enthusiastically of hearing from a physicist friend about the
progress of science beyond three dimensions to four-dimensional space-time. !4

The question of the artistic influence of the fourth dimension in Germany, never-
theless, deserves further research. Germany, after all, had produced more scholarly
and semipopular articles on this subject than any other country by 1910.5 This
literature needs to be surveyed carefully, and the writings of German artists, as well

11' As will be seen, the notion of a vortex itself had
been connected to the fourth dimension by Hinton.
However, although there was a strongly geometrical
orientation in Vorticist art (advocated particularly by
T. E. Hulme) and Ezra Pound was later vocal in his
support of George Antheil’s musical interest in a fourth
dimension, Wyndham Lewis’s desire to prove Vorti-
cism independent of its Cubist and Futurist sources
may have caused him to downplay the fourth dimen-
sion. Only later did Lewis write on the subject—after
its redefinition by Einstein—in Time and Western Man
(New York: Harcourt, Brace & Co., 1928).

12 Although the fourth dimension never became a
vital part of his Theosophical system, Steiner had ac-
tually lectured on the subject in 1904-1905 (Robert
C. Williams, Artists in Revolution: Portraits of the Rus-
sian Avant-Garde 1905-1925 [Bloomington: Indiana
University Press, 1977], p. 109).

13 By the time Apollinaire traveled to Berlin with

Delaunay in early 1913, he was no longer so interested
in the fourth dimension. Nevertheless, the German
avant-garde would have learned of his earlier views on
Cubism and the fourth dimension in Les Peintres Cu-
bistes. For example, Paul Fechter in his 1914 text Der
Expressionismus cynically chided Apollinaire for neg-
lecting in Les Peintres Cubistes to discuss Riemann and
non-Euclidean geometry in connection with the fourth
dimension (Paul Fechter, Der Expressionismus [Mu-
nich: R. Piper & Co., 1914], p. 34).

14 Franz Marc letter to Maria Marc, 24 January 1916,
in Marc, Briefe, Aufzeichnungen und Aphorismen (Ber-
lin: Paul Cassirer, 1920), p. 104. Marc’s change in
attitude toward science is discussed by Ida Katherine
Rigby in “Franz Marc’s Wartime Letters from the Front,”
in Franz Marc, 1880-1916, ex. cat. (University Art
Museum, University of California, Berkeley, 5 Dec.
1979-3 Feb. 1980), p. 58.

' See Duncan M. Y. Sommerville, Bibliography of
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as figures such as Kandinsky's friend Arnold Schoenberg, should be examined closely
for evidence of the influence of the new geometries, even in their most subtle, non-
mathematical forms.'® For instance, Schoenberg's advocacy of a new atonal language
for music reflects one of the most persistent themes associated with “the fourth di-
mension": the inadequacy of present language to deal with the new reality of higher
dimensions.

The present study, however, concentrates on the early twentieth-century artists and
movements that have left the most direct records of their interest in the spatial concepts
associated with the new geometries. Even in the absence of advocates among the
German Expressionists and English Vorticists, the fourth dimension and non-Euclidean
geometry emerge as among the most important themes unifying much of modern art
and theory.

Non-Euclidean Geometry, Including the Theory of Par- Sturm, Walden must have had at least a passing interest
allels, the Foundations of Geometry, and Space of n Di- in the fourth dimension, for he published in 1911 a
mensions (London: Harrison & Sons, 1911), p. viii. review by S. Friedlaender-Halensee of Max Zerbst's

1o Another figure for investigation is Herwarth Wal- Die vierte Dimension (Der Stwrm, u (Oct. 1911], 663-

den, founder of the Berlin gallery and periodical Der 64).
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The Nineteenth-Century Background

T he two geometries that were to fascinate artists in the first decades of the

twentieth century had been developed more than sixty years earlier. The prin-

ciples of a consistent non-Euclidean geometry were initially formulated in the 1820s,

while the first major discussions of n-dimensional geometry were published in the
1840s.

Non-Euclidean Geometry

Non-Euclidean geometry was named for its opposition to one of the postulates Euclid
had set forth as the basis of his deductive system of geometry in the Elements (ca. 300
B.C.). Even the earliest commentators on Euclid felt that his fifth postulate was not
as self-evident as the others and must somehow be deducible from another of his
postulates or common notions. The famous “parallel postulate,” as it is called, states,
“That, if a straight line falling on two straight lines make the interior angles on the
same side less than two right angles, the straight lines, if produced indefinitely, meet
on that side on which are the angles less than two right angles.”' More familiar is the
equivalent formulation of this notion: “Through a given point can be drawn only one
parallel to a given line."”

Over the centuries all attempts at a direct and, later, an indirect proof of the parallel

" The Thirteen Books of Euclid's Elements, trans. 2 Harold E. Wolfe, Introduction to Non-Euclidean Ge-
Thomas L. Heath, 3 vols., 2nd ed. (Cambridge: The ometry (New York: Holt, Rinehart & Winston, 1945),

University Press, 1926), 1, p. 155. p. 20.
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postulate were unsuccessful.> By 1824 Karl Friedrich Gauss had concluded that alter-
native geometries to Euclid’s must be possible. Gauss never published his thoughts on
non-Euclidean geometry, and so the honor of its official discovery has been given to
Nikolai Ivanovich Lobachevsky, a Russian, and Janos Bolyai, a Hungarian, who sep-
arately formulated the first system of non-Euclidean geometry. In 1829 Lobacheysky
published “On the Principles of Geometry” in the Kazan Messenger, describing the
“imaginary geometry” he had developed as early as 1826. Bolyai’s work on the “Ab-
solute Science of Space,” as he called it, appeared only in 1832 as an appendix to his
father’s mathematical treatise, Tentamen, although he had completed his manuscript
by 1829.5

Lobachevsky and Bolyai chose the same alternative to the parallel postulate: Through
a given point not on a given line, more than one line can be drawn not intersecting
the given line. In such a geometry, then, an infinite number of lines can be drawn
through a point, and, although these lines may approach a given line as they are
extended to infinity, they will never intersect it. Similarly, the sum of the angles of
a triangle will be less than the familiar 180° of Euclidean geometry. The visualization
of these properties of figures in the Lobachevsky-Bolyai geometry was greatly facilitated
in 1868 when the Italian mathematician Beltrami proposed the “pseudosphere” as a
partial model for this type of non-Euclidean geometry (Fig. 1). On such a surface of
constant negative curvature one can more readily imagine how a group of lines might
be parallel to another, approaching it but never intersecting it, and how the angle
sum of a triangle can be less than 180°.

Beltrami’s introduction of the pseudosphere in 1868 indicated a sudden sharpening
of interest among mathematicians in non-Euclidean geometry, after several decades
in which the research of Lobachevsky and Bolyai remained practically unknown. Bolyai
had in fact published little beyond his appendix for the Tentamen. Lobachevsky, on
the other hand, had continued to write on his new geometrical discoveries, but these
works were primarly in Russian.® The situation changed radically during the 1860s in

3 See Roberto Bonola, Non-Euclidean Geometry: A
Critical and Historical Study of Its Development, trans.

5 Wolfe, Introduction, p. 52.
¢ The major exceptions in Lobachevsky’s predomi-

H. S. Carslaw (Chicago: Open Court, 1912) for an
account of the attempts of Gerolamo Saccheri and
others to prove the parallel postulate.

4 On Gauss and Lobachevsky, see Carl B. Boyer, A
History of Mathematics (New York: John Wiley & Sons,
1968), pp. 567, 586-81. For Lobachevsky’s career and
geometrical philosophy, see Alexander Vucinich, “Ni-
kolai Ivanovich Lobachevskii: The Man Behind the
First Non-Euclidean Geometry,” Isis, L1 (Dec. 1962),
465-81. See also Chapter 5, n. 14, below.

nantly Russian bibliography were the article “Géo-
métrie imaginaire,” published in French in 2 German
journal in 1837, and the 1840 treatise Geometrische
Untersuchungen zur Theorie der Parallellinien, published
in Berlin. See the Bibliography, sec. 1, A, for a listing
of Lobachevsky’s and Bolyai’s major works and trans-
lations of these. An indispensable aid in dealing with
the history of non-Euclidean (and n-dimensional) ge-
ometry is Sommerville, Bibliography of Non-Eudidean
Geometry (Intro., n. 15, above).
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France, however, when Hoiiel translated into French an important treatise by each
of these men, adding extracts of Gauss’s correspondence on non-Euclidean geometry
to the Lobachevsky translation.” The name of Gauss gave new prestige to non-Eu-
clidean geometry, which now captured the interest of a younger generation of math-
ematicians, who developed it further.

The year 1867 witnessed the publication of Georg Friedrich Bernhard Riemann’s
now famous speech of 1854, in which the idea for the other major type of non-
Euclidean geometry was suggested. Riemann'’s lecture before the faculty of the Uni-
versity of Gottingen, “Uber die Hypothesen, welche der Geometrie zu Grunde liegen,”
offered a broad new view of geometry, as well as specific suggestions for another
alternative to Euclid’s system. Riemann saw geometry in general as the study of
manifolds of any number of dimensions and of any curvature, using differential geometry
as the measure of this curvature.

In the course of his discussion of this new approach to geometric space, Riemann
pointed out for the first time the important distinction between unbounded space and
infinite space. On the surface of a sphere space would be unbounded and yet finite,
and the sphere, in fact, is the most easily understood model for the non-Euclidean
geometry implied by Riemann. Once space is finite and a line cannot be extended
indefinitely (as Euclid’s parallel postulate assumes it will be), it is possible to establish
that no line can be drawn parallel to a given line.® This principle is readily apparent
in the geometry of the sphere where “lines” are defined as great circles and will all
intersect at the “poles” of the sphere (Fig. 2). From the analogy with spherical ge-
ometry, it is also clear that the sum of the angles of a triangle will be greater than
180°. Riemann’s geometry on surfaces of constant positive curvature is thus the opposite
of the Lobachevsky-Bolyai geometry of surfaces of constant negative curvature.

Riemann’s metrical approach to geometry and his interest in the problem of con-
gruence also gave rise to another type of non-Euclidean geometry, in this case defined
not by its rejection of the parallel postulate but rather by its irregular curvature. While
in a system of Lobachevskian or Riemannian geometry based on alternatives to the
parallel postulate the measure of curvature must be constant, Riemann’s broad view
of geometry had suggested the possibility of surfaces or spaces where curvature might
vary. On such an irregularly shaped surface, a figure could not be moved about without
changes occurring in its own shape and properties.® Although Euclid had not formally

7 Bonola, Non-Euclidean Geometry, p. 123. See also & Liveright, 1927; 2nd ed., rev. and enl. New York:

Sommerville, Bibliography, p. v. Dover, 1950), ch. 3, “Riemann’s Discoveries and Con-
8 Wolfe, Introduction, p. 61. gruence.” For the work of Helmholtz and Lie on this
? On non-Euclidean geometry considered in terms subject, see Bonola, Non-Euclidean Geometry, pp. 152-
of congruence, see A. d’Abro, The Evolution of Sci- 54.

entific Thought from Newton to Einstein (New York: Boni The remaining history of non-Euclidean geometry
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postulated the indeformability of figures in movement, this assumption is essential to
his system.'® When the principle of indeformability is negated, a geometry results in
which figures may “squirm” when they are moved about.

[t was this latter type of non-Euclidean geometry that would be of greatest interest
to artists of the early twentieth century, such as the Cubists and Marcel Duchamp.
In the end, too, the primary non-Euclidean characteristic of Einstein’s space-time
continuum would be its variable curvature from place to place, caused by the gravi-
tational force of the matter distributed throughout the continuum. Yet the two types
of non-Euclidean geometry (deriving either from alternatives to the parallel postulate
or from questions of congruence) shared a critical and provocative idea: the possibility
of curved space. The suggestions that space beyond our immediate perceptions might
be curved or that the appearance of objects moving about in an irregularly curved
space might change had a natural appeal to early modern artists. The existence of
curved space would necessarily invalidate the linear perspective system, whose dom-
inance since the Renaissance was being challenged by the end of the nineteenth
century. Likewise, traditional means of rendering objects could hardly be adequate if
no absolute, unchanging form for an object could be posited. Important philosophical
consequences also attended the birth of these new geometries. The proof of the
fallibility of Euclid could only add to the growing recognition in the nineteenth century
of the relative nature of the mathematical or scientific “truths” that man can discover.

The Geometry of n Dimensions

The development of n-dimensional geometry was far less unified, for no single
discoverer of the geometries of four or more dimensions can be named. Instead, n-
dimensional geometry emerged gradually during the second quarter of the nineteenth
century, as a natural extension of analytic geometry, in which one or more variables
are easily added to x, y, and z. Two important early works on this subject can be cited
nevertheless: Arthur Cayley’s 1843 article in the Cambridge Mathematical Journl,

involves its reevaluation in the light of projective ge- ometry (Boyer, A History of Mathematics, p. 592).
ometry, a more general geometry that is freed of ref- 10 This defect in Euclid's Elements was corrected only
erences to measurement. One of its proponents, Felix in 1899 in David Hilbert’s critical study of the axioms
Klein, not only discovered an alternate model for Rie- of Euclid, Grundlagen der Geometrie, a work that fo-
mann’s geometry, but also was able to establish both cused further attention on alternatives to the Euclid-
non-Euclidean geometry and Euclidean geometry as ean system.

special cases within the overall unity of projective ge-
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“Chapters in the Analytical Geometry of n Dimensions,” and Hermann Grassmann’s
Die lineale Ausdehnungslehre of 1844.1' Riemann’s 1854 speech with its broad view of
a non-Euclidean geometry of n dimensions also contributed to the history of n-di-
mensional geometry and serves as a reminder that the two geometries can be joined,
although they are two distinct branches of mathematics.

For much of the third quarter of the nineteenth century, when the move to n
dimensions was made by various mathematicians, it was done simply as an extension
of their own work on a particular type of problem. Thus, until the 1870s n-dimensional
geometry remained largely an accessory to other geometrical research without a unified
body of principles and theorems of its own. However, in 1870 Cayley set forth the
general principles of n-dimensional geometry in his “Memoir on Abstract Geometry.”
And by 1881 Veronese could employ the methods of synthetic geometry for n di-
mensions, marking a shift toward more concrete representations of the subject matter
of n-dimensional geometry.!2

Although Mébius in 1827 had suggested that three-dimensional figures could be
made to coincide if space had four dimensions, " interest in the physical properties of
four-dimensional figures and space developed only gradually among mathematicians.
Obviously, it was far more difficult to apply the physically oriented geometrical rea-
soning of synthetic geometry to higher dimensions than to treat the fourth dimension
as an algebraic variable of analytic geometry. The initial challenge felt by nineteenth-
century geometers would confront all successive advocates of the fourth dimension:
how can we visualize a new dimension, perpendicular to each of the three dimensions
of our familiar world?

N-dimensional geometry requires a redefinition of many of our common conceptions
of geometrical principles. With the addition of a fourth dimension, new definitions
of parallelism and perpendicularity must be made for “hyperspace,” the space of four
or more dimensions.!* Often the four-dimensional property will be analogous to its
three-dimensional counterpart with one dimension added. Thus, rotation in four
dimensions occurs about a plane instead of about a line. The most obvious example
of the operation of the rule of analogy is in the case of four-dimensional “hypersolids.”
A “hypercube” would be generated by the motion of a cube into a new fourth direction,

1 Boyer, A History of Mathematics, p. 584. For a
general history of n-dimensional geometry and an in-
troduction to its principles, see Henry Parker Man-
ning, Geometry of Four Dimensions (New York: Mac-
millan Co., 1914).

2 Ibid., p. 8; Cayley, “Memoir,” in Philosophical
Transactions of the Royal Society (London), cix (1870),
51-63; Veronese, “Behandlung der projectivischen

Verhiltnisse der Riaume von verschiedenen Dimen-
sionen . . .” in Mathematische Annalen (Leipzig), xix
(1881), 161-234.
13 Mabius, Der barycentrische Calcul (Leipzig, 1827),
p. 184; Manning, Geometry of Four Dimensions, p. 4.
14 See Manning, Geometry of Four Dimensions, chs.
2, 4.



8 [J NINETEENTH-CENTURY BACKGROUND

a process analogous to the generation of a cube by a square moving perpendicularly
to itself. Similarly, a hypersolid is bounded by three-dimensional solids, just as the
three-dimensional solids we know are bounded by two-dimensional planes. Such a
complex figure must necessarily be viewed in sections either by passing it through our
space so that new three-dimensional sections continually appear or by turning it on
an axis and taking successive three-dimensional views of it.

A landmark in the study of hypersolids was the publication by W. 1. Stringham of
“Regular Figures in n-Dimensional Space” in the American Journal of Mathematics for
1880. The impact of this article was remarkable: there are numerous references to it
in the writings of mathematicians and nonmathematicians in the early twentieth
century, even after the combined use of synthetic and analytic methods had led to
more sophisticated means of portraying four-dimensional hypersolids. Stringham worked
purely synthetically, extending Euler’s formula for polyhedra to establish the number
of vertices, edges, and faces of the six regular polyhedroids of four-dimensional ge-
ometry."” He then produced one of the earliest known sets of illustrations of these
hypersolids, depicting a summit of each of these figures spread out in three-dimensional
space (Figs. 3, 4). Stringham’s only attempts at any sort of complete view of any of
the polyhedroids are his figures 2, 4, and 6, which are the complete projections on a
plane of his figures 1, 3, and 5. His figure 4 is particularly noteworthy for its method
of representing the four-dimensional hypercube, a depiction that was to be adopted
by many popularizers of “the fourth dimension.”

A mathematician who acknowledged the influence of Stringham’s figures was Victor
Schlegel, whose numerous articles on n-dimensional geometry during the 1880s and
1890s were published in German, French, and Italian mathematical periodicals. Schle-
gel’s approach was more analytic than Stringham’s, but in terms of the concrete
representation of n-dimensional polyhedroids, Schlegel went even further than Stringham.
He produced actual models of the polyhedroids’ projections on three-dimensional
space, exhibiting these for the first time at a congress of German physicians at Magde-
burg in 1884.1¢

The absence of illusionism (and thus the possible suggestion of added dimensions)
that plagues any portrayal of the fourth dimension by sculptural three-dimensional

15 “A regular polyhedroid consists of equal regular
polyhedrons together with their interiors, the polyhe-
drons being joined by their faces so as to enclose a
portion of hyperspace, and the hyperplane angles formed
at the faces by the half-hyperplanes of the adjacent
polyhedrons being all equal to one another” (Man-
ning, Geometry of Four Dimensions, p. 289). See
Stringham, “Regular Figures in n-Dimensional

Space, " American Journal of Mathematics, m (1880), 1-
12.

16 Maurice Boucher, Essai sur I'hyperespace: Le Temps,
la matiere et I'énergie (Paris: Félix Alcan, 1903), p. 140.
Boucher also indicates that Schlegel’s models were
available commercially on a limited scale: “On peut
les trouver a la librairie Martin Schilling a Halle-sur
Saale” (p. 140).
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solids is likewise a problem in the diagram of the eight component cubes of the
hypercube that had come into use by the end of the nineteenth century (Fig. 5). This
version and its more popular, symmetrical counterpart (with the eighth cube omitted)
are too-literal embodiments of the fact that four-dimensional hypersolids are bounded
by three-dimensional solids. Here the danger for the unknowing observer is the false
sense of completeness and adequacy, with no reminder that an entire dimension (the
fourth) is missing. Slightly more correct is Figure 6, a three-dimensional perspective
projection of the hypercube. However, in four-dimensional space each of the truncated
pyramids surrounding the central cube would naturally retain its cubic shape, as the
cubes here do not.

The basic difficulty is inherent in our conventional perception of the world. Vis-
ualizing a fourth perpendicular “inserted” into the intersection of the three dimensions
that meet in the corner of a room seems impossible. Yet, as will be seen, advocates
of a fourth dimension took great comfort in the analogy of a flat, two-dimensional
world of beings unaware of the third dimension. The very challenge of visualizing and
depicting higher dimensions, coupled with the encouraging message of the two-di-
mensional analogy, was certainly a major cause for the lasting fascination of the fourth
dimension. But the difficulty of conceiving a fourth dimension also led to the occasional
use of the more easily understood idea of time as the fourth dimension.

The first published suggestion that time be considered a fourth dimension was
apparently made by d’Alembert in his 1754 article on “Dimension” in the Encyclopédie
edited by Diderot and himself. There d’Alembert attributed the idea to “un homme
d’esprit de ma connaissance.” This “homme d’esprit” may well have been Lagrange,
who is usually credited with this thought, although his first published reference to it
occurred only in 1797 in his Théorie des fonctions analytiques.'?

In the end, the definition of the fourth dimension as time was actually to displace
popular interest in higher spaces. Following its use by H. G. Wells in his science
fiction tale of 1895, The Time Machine, a temporal fourth dimension became part of
the science “fact” of Minkowski’s space-time continuum for Einstein’s Theory of
Relativity in 1908. However, in the late nineteenth-and early twentieth-century lit-
erature on the fourth dimension, time was always the less important of the two
interpretations of the fourth dimension. If, in certain more philosophical and mystical
expositions of a spatial fourth dimension, time played a role in the process of visualizing
a higher dimension of space, time itself was not interpreted as the fourth dimension.

17On d’Alembert, see R. C. Archibald, “Time as d’Alembert (Paris: n.p., 1751-1765), 1v, 1010. On
a Fourth Dimension,” Bulletin of the American Math- Lagrange, see Manning, Geometry of Four Dimensions,
ematical Society, xx (May 1914), 409-12; and d’Alem- p- 4.
bert, “Dimension,” in Encyclopédie, ed. Diderot and
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It was the geometry of higher dimensions of space, along with non-Euclidean geometry,
which fascinated the public in the early twentieth century.

The Rise of Popular Interest in the New Geometries

Ideas deriving from the new geometries, which had been the province of mathe-
maticians alone in the first half of the nineteenth century, gradually began to appear
in nonmathematical literature from the 1860s onward. This process is recorded in the
listings of popular articles in Duncan Sommerville’s Bibliography of Non-Euclidean
Geometry, Including . . . Space of n Dimensions. Two specific areas of philosophical
debate were the initial sources of public interest in non-Euclidean geometry and the
geometries of higher dimensions: the nature of geometrical axioms and the nature of
our space. Controversy about the nature of geometrical axioms naturally resulted from
the challenge non-Euclidean geometry posed to Kant’s view that the axioms of math-
ematics were a priori, and thus this debate concerned itself primarily with non-Eu-
clidean geometry. The examination of the nature of our space, however, encompassed
two questions: (1) the possible curvature of space, an issue relating to non-Euclidean
geometry and the problem of geometrical axioms; and (2) the number of dimensions
of space, suggested by geometries of higher dimensions. Certainly these two facets of
the nature of space overlapped somewhat, and non-Euclidean geometry and n-dimen-
sional geometry were linked at times in certain popular treatments. However, on the
whole, the dispersion of the ideas of non-Euclidean geometry occurred in relation to
geometrical axioms and the curvature of space, while that of n-dimensional geometry
took place initially through writings on the number of dimensions of space.

Hermann von Helmholtz, through his popular writings on the axioms of geometry
and the possible curvature of space, was a primary vehicle for disseminating these first
ideas about non-Euclidean geometry. Helmholtz’s articles, published not only in Ger-
many but also in England, France, and the United States, attracted attention wherever
they appeared during the 1860s and 1870s. However, no real upsurge of national
interest can be discovered until the late 1880s and 1890s in Paris, when a heated
debate was carried on in the Revue Philosophique and the Revue de Métaphysique et de
Morale. This French controversy over the nature of geometrical axioms stands out in
Sommerville’s bibliography as the most concentrated nonmathematical manifestation
of non-Euclidean geometry in the nineteenth century.

If the development of non-Euclidean geometry was a major impetus for a rethinking
of questions about space, the idea of higher dimensions of space quickly assumed its
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own life, ultimately becoming far more popular than the notion of curved space.
Sommerville’s listings reveal that this fascination with higher dimensions first emerged
in England during the 1870s, where “the fourth dimension” soon became a code name
for n-dimensional geometry. A variety of connotations were gradually added to the
geometrical meaning of “the fourth dimension,” so that by 1900 the term had phil-
osophical, mystical, and pseudoscientific implications along with its alternative inter-
pretation as time. Although the early contributors to a lore of “the fourth dimension”
were English, by the end of the nineteenth century the concept had gained publicity
elsewhere through speculation on the nature of space in an increasing number of
popular treatments. In the United States the fourth dimension was the subject of
articles in magazines such as The Popular Science Monthly and Science. In France the
question of the number of dimensions of space was frequently raised as part of con-
temporary investigations into space and our perception of it, and important statements
on the subjects were made by Henri Poincaré, whose popular texts were read by a
number of French artists.

The Popularization of Non-Euclidean Geometry: Helmholtz to Poincaré

When Kant in the Critique of Pure Reason of 1781 made his distinction between
synthetic and analytic judgments and argued for the existence of judgments that are
synthetic a priori, he offered the axioms of pure mathematics and geometry as his
primary examples. According to Kant, the axiom “That the straight line between two
points is the shortest” must be synthetic because its predicate is not contained in its
subject (as in an analytic judgment), and a priori because “[it] carries with [it] necessity,
which cannot be derived from experience.”’® The a priori nature of the axioms of
geometry depended upon Kant’s new definition of space in the Critique as a pure form
of sensibility, which exists in the mind a priori as the frame in which all experience
occurs. He writes in the Critique,

Were this representation of space a concept acquired a posteriori, and derived
from outer experience in general, the first principles of mathematical determi-
nation would be nothing but perceptions. They would therefore all share in the
contingent character of perception; that there should be only one straight line
between two points would not be necessary, but only what experience always
teaches. What is derived from experience has only comparative universality,
namely, that which is obtained through induction. We should therefore only be

18 Immanuel Kant, Critique of Pure Reason, trans. 1929), p. 52.
Norman Kemp Smith (London: Macmillan & Co.,
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able to say that, so far as hitherto observed, no space has been found which has
more than three dimensions. !

For Kant, “geometry” meant Euclidean geometry, the only geometry known for two
thousand years. And in Kant’s transcendental idealism, “space” was Euclidean space,
possessing of necessity three dimensions.

The Kantian system was seriously challenged when Gauss, Lobachevsky, and Bolyai
proved that certain of Euclid’s axioms might be denied and a consistent geometry
could still be worked out. The axioms of Euclid can hardly be said to originate within
us, a priori, if we can conceive other systems of geometry. But how, then, did Euclid’s
system of axioms develop? John Stuart Mill, in his System of Logic of 1843, had already
suggested that the elementary truths of geometry are simply the results of repeated
observation.?’ With the rise of interest among mathematicians in the non-Euclidean
geometries, Helmholtz seized upon the existence of these geometries as proof of his
belief in the empirical origin of geometrical axioms and the impossibility of their being
a priori.

Helmholtz produced many articles on the axioms of geometry, beginning in 1866
and culminating in his lecture “On the Origin and Significance of Geometrical Ax-
ioms.” First given as a speech in Heidelberg in 1870 and published in Academy in
London that year, Helmholtz’s text was augmented for publication in Mind (London)
in 1876. This final version was later incorporated in the second volume of Helmholtz's
Popular Lectures on Scientific Subjects of 1881. To convey his message to a nonmath-
ematical audience, Helmholtz employed the example of an imaginary world of two-
dimensional beings living on the surface of a sphere, a model he most likely derived
from Gauss. When it came to setting up a system of geometrical axioms, these reasoning
beings would know nothing of parallel lines, for all their lines would intersect when
extended sufficiently. Similarly, triangles would have angle sums greater than 180°,
as they do in Riemann’s geometry. “Nor are more examples necessary,” writes Helm-
holtz, “to show that geometrical axioms must vary according to the kind of space
inhabited by beings whose powers of reasoning are quite in conformity with ours.”!

19 Ibid., pp. 68-69. don: Longmans, Green & Co., 1881), p. 38. Also

20 For Lobachevsky’s conscious opposition to Kant-
ian philosophy, see Vucinich, “Lobachevskii,” pp. 473-
76. On Mill's empirical view of mathematics, see Leszek
Kolakowski, The Alienation of Reason: A History of
Positivist Thought, trans. Norbert Guterman (Garden
City, N.Y.: Doubleday, 1968), pp. 80-81.

2t Helmholtz, “On the Origin and Significance of
Geometrical Axioms” (1870), in Popular Lectures on
Scientific Subjects, trans. E. Atkinson, 2nd ser. (Lon-

included in this volume of Popular Lectures is Helm-
holtz’s “On the Relation of Optics to Painting,” which
had been published in French translation in a book
with E. Brucke’s Principes scientifiques des beaux-arts:
Essais et fragments de théorie in 1878. A list of the
original versions and translations of Helmholtz's writ-
ings on geometrical axioms is included in the Bibliog-
raphy, sec. I, B, 1.
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The work of Helmholtz on the problem of geometrical axioms was one aspect of
his fight against the nativist school of psychology rooted in the philosophy of Kant
and Fichte. His overall concern was in combating the traditional Kantian idea of an
innate a priori space with proof that our knowledge of space originates in experience.
Helmholtz, thus, was one of the participants in the controversy between nativism and
empiricism in psychology during the second half of the nineteenth century. Philo-
sophically, his position was a positivist one, and Helmholtz's views would be regarded
as such by later popular idealist philosophers, who believed that an empirical proof
of the non-Euclidean or four-dimensional nature of our space was not necessary in
order for it to be so.%

In the positivist, empiricist approach, geometrical axioms and space are as inex-
tricably bound together in their empirical nature as they are in Kant’s view of their
necessarily mutual a priority. If the principles of geometry are the result of the space
in which they are developed, as Helmholtz argues for his sphere dwellers, then these
axioms should be verifiable by empirical observation, a process that will at the same
time establish the structure of space. The existence of non-Euclidean geometry sug-
gested, even to its first theorists, that a test should be made on our space, which for
so long had been universally accepted as Euclidean.

Both Gauss and Lobachevsky tried to test their new geometry against physical space
to determine if, perhaps, space did have an element of non-Euclidean curvature that
had not been apparent enough to affect the formulation of Euclid’s system. While
Gauss attempted to measure the angle sum of an immense triangle formed by three
mountain peaks, Lobachevsky sought to determine the curvature of space by measuring
the parallax of distant fixed stars. In Euclidean space the “space constant” discovered

22 For Helmholtz’s role in the history of psycho-
physics, see Edwin C. Boring, A History of Experimental
Psychology (New York: The Century Co., 1929), ch.
14. For a discussion of the empiricism-nativism con-
troversy, see Boring, Sensation and Perception in the
History of Experimental Psychology (New York: Apple-
ton-Century-Crofts, 1942), pp. 233-38. Helmholtz was
willing to admit that a certain basic Kantian spatiality
might be intrinsic to the mind, but he insisted that
this spatiality must include the possibility of both Eu-
clidean and non-Euclidean spaces, the choice between
them to be made by experience.

Maurice Mandelbaum, in History, Man and Reason:
A Study of Nineteenth-Century Thought (Baltimore: Johns
Hopkins Press, 1971), analyzes the evolution of pos-
itivism in the nineteenth century and the important
changes it underwent, enabling the positivist view of

science finally to merge with the idealist tradition.
Helmbholtz is among the “critical positivists” who re-
jected the attempts of “systematic positivists” like Comte
and Spencer to develop a system including all disci-
plines and preferred simply a positivist philosophy of
science (pp. 10-20). The two groups were united,
nevertheless, in their scorn of metaphysics and their
belief in experimental science as the ideal form of
knowledge. For Mandelbaum’s discussion of Helm-
holtz, see pp. 16, 292-98. Helmholtz actually under-
stood his critical positivism as a Kantian position. He
and certain other positivists reached this conclusion
by taking Kant’s emphasis on the role of experience
out of the context of his transcendental philosophy
and adapting it to their own ends. See Kolakowski,
The Alienation of Reason, p. 102.
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by these astronomical calculations is zero, while it would be positive and finite in the
space of Lobachevsky’s geometry and negative in Riemann’s space. Neither Gauss nor
Lobachevsky found any deviation from Euclidean values, but Lobachevsky's results
were later cast into doubt when further astronomical study proved that certain of his
figures were incorrect.? Thus, by the time Helmholtz was writing on the subject of a
possible curvature of space, he could state that empirical observation seemed to confirm
the Euclidean axiom of parallels, but that Euclid’s geometry could not be taken as
absolute in any sense. Future research, employing “other than our limited base-lines,
the greatest of which is the major axis of the earth’s orbit,”?* might well prove that
space was in fact non-Euclidean.

In the eyes of those who supported Kant’s view of geometrical axioms, non-Euclidean
geometry was not as “legitimate” as Euclidean geometry, because the space it engen-
dered was not “intuitive.”? Helmholtz, on the contrary, held that the human mind
could intuit, or represent to itself, non-Euclidean space. He defended his view by
demonstrating such a process of intuition, using Beltrami’s model for three-dimensional
pseudospherical space. Carefully defining “to represent” as “the power of imagining
the whole series of sensible impressions that would be had in such a case,” he took
further precautions and distinguished his imaginable non-Euclidean space from a fourth
dimension he believed was impossible to represent. Helmholtz had quickly dismissed
the fourth dimension in his discussion of a plane world on a sphere and its development
of a non-Euclidean geometry. Of the sphere dwellers he had written,

But they could as little represent to themselves what further spatial construction
would be generated by a surface moving out of itself, as we can represent what
would be generated by a solid moving out of the space we know. . . . Now as
no sensible impression is known relating to such an unheard-of event, as the
movement to a fourth dimension would be to us, . . . such a “representation” is
as impossible as the “representation” of colours would be to one born blind, if a
description of them in general terms could be given to him.2

The “series of sensible impressions” necessary in Helmholtz’s approach for an in-
tuition of three-dimensional pseudospherical space was provided by Beltrami’s sug-
gestion that the interior of a Euclidean sphere corresponds to this type of non-Euclidean
space. The surface of the sphere represents infinitely distant points of pseudospherical

2 On how the measurement of the parallax of stars 55.
may determine the structure of the universe, see Max 55 See, e.g., Kant's major French defender, Charles
Jammer, Concepts of Space: A History of Theories of Renouvier, “La Philosophie de la régle et du compas,”
Space in Physics (Cambridge, Mass.: Harvard Univer- L’Année Philosophique, n (1891), 1-66.
sity Press, 1954), pp. 146-48. 26 Helmholtz, “On the Origin and Significance,” pp-
% Helmholtz, “On the Origin and Significance,” p. 34.35.
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space, by virtue of the diminution in size of the units of space as they approach the
surface. The observer in the center of the sphere will never be able to reach the surface
of the sphere, and the lines along which he moves toward the surface will never
intersect, behaving just as their counterparts in pseudospherical space.?’

Helmbholtz's example did not convince the neo-Kantians, however, who argued that
Beltrami’s model provided no real intuition of pseudospherical space.?® This argument
was to be repeated many times during the nineteenth century by the advocates of
Kant in their defense of a priori space and Euclidean geometry. The question of the
nature of geometrical axioms had by no means been settled by Helmholtz, and a major
controversy over this question surfaced in France during the late 1880s and 1890s,
where intermediary and new positions on the subject made the situation even more
complex.

In addition to the numerous books on the subject, the Revue Philosophique and the
Revue de Métaphysique et de Morale served as the major forums for the French debate
on the nature of geometrical axioms, indicating its highly philosophical orientation.?
Of the participants, no contemporary spokesman defended the purely empirical view
of Helmholtz against the counterattack of Kant’s defenders. Instead, those who crit-
icized the Kantian position also rejected aspects of Helmholtz’s view and then proposed
various new theories, which quickly established antagonisms among themselves. The
importance of the French debate was twofold. It gave non-Euclidean geometry a
currency in Paris among intellectuals, and out of this debate emerged the definitive
statements on this subject by Henri Poincaré, the mathematician-scientist and writer
who, more than any other individual, was responsible for the popularizaton of non-
Euclidean geometry in Paris during the first decade of the twentieth century.

Poincaré actually asserted his ideas quite early in the course of the debate, although
he hardly convinced the strong partisans of other positions, who continued to argue
for another fifteen years at least. In 1887 Poincaré first published his theory that the
axioms of geometry are neither synthetic a priori nor empirical, but are conventions,
a view now generally accepted as the solution to the controversy. In “Sur les hypothéses
fondamentales de la géométrie” Poincaré had argued,

One may now ask what these hypotheses [axioms| are. Are they experimental
facts, analytic judgments or synthetic a priori judgments? We must respond neg-

27 Ibid., pp. 48-49, 60-61.

% Antonio Aliotta, The Idealistic Reaction Against
Science, trans. Agnes McCaskill (London: Macmillan
& Co., 1914), pp. 280-81.

» On these French sources, see Bibliography, sec.
I, B, 3. For a fuller listing of relevant articles, and a
discussion of the debate, see Henderson, “The Artist,”

pp. 35-38, 517-18. Bertrand Russell provides an overview
of the French debate in An Essay on the Foundations
of Geometry (Cambridge: The University Press, 1897),
pp. 110-16. Russell’s own philosophy of geometry em-
phasized the a priori deduction of logic in mathematics.
Poincaré opposed Russell on this issue, ever empha-
sizing the importance of intuition in geometry.
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atively to these three questions. If these hypotheses were experimental facts,
geometry would be subject to unceasing revision and would not be an exact
science; if they were synthetic a priori judgments or, even more, analytic judg-
ments, it would be impossible to remove one and establish a system on its negation.

Thus, the fundamental hypotheses of geometry are not experimental facts; it
is, however, the observation of certain physical phenomena which accounts for
the choice of certain hypotheses among all possible ones.

On the other hand, the group chosen is only more convenient than the others
and one cannot say that Euclidean geometry is true and the geometry of Loba-
chevsky is false any more than one could say that cartesian coordinates are true
and polar coordinates false.*

Poincaré produced numerous articles during the 1890s and three major books be-
tween 1900 and 1910 in which he reiterated his views on geometrical axioms, adding
arguments for the conventionalist view of the nature of space suggested at the end of
the passage quoted above. Already in 1891 he had formulated his famous illustration
of the impossibility of proving the truth or falsity of the hypothesis that our space is
Euclidean.?! If an astronomical triangle were measured and a deviation from 180°
found, either Euclidean geometry could be renounced or the assumption could be
made that light travels in curved instead of straight lines. The adoption of this last
assumption, which could never be disproved according to Poincaré, would simply be
more “‘commode” or convenient than the rejection of Euclidean geometry. Poincaré
buttressed his position as the decade progressed, emphasizing that measurement can
never be made of space itself, but only of bodies within that space, bodies whose
behavior during the course of measurement is by no means certain. By his convincing
arguments that the question “Which is the true Geometry?” is meaningless, Poincaré
resolved the nineteenth-century debate on this subject. Only the advances of twen-
tieth-century physics have produced a modification of his strictly conventionalist
view.*

3 Poincaré, “Sur les hypothéses fondamentales de
la géométrie,” Bulletin de la Société Mathématique de
France, xv (1887), 215.

31 Poincaré, “Les Géométries non euclidiennes,” Re-
vue Générale des Sciences Pures et Appliquées, 1 (15
Dec. 1891), 774. For Poincaré’s writings, see Bibli-
ography, sec. I, B, 3.

32 Poincaré’s conventionalist view of the axioms of
pure geometry has been largely retained, but with the
development of Einstein’s General Theory of Relativ-
ity, Euclidean geometry no longer seems the “most

convenient” for physicists studying space. Physicists
in the tradition of Einstein assert that a valid “physical
geometry” can be applied to the space of the universe,
which according to their theories is non-Euclidean.
Based on the assumptions they set forth about the
behavior of physical bodies, the character of the ge-
ometry of space can be established empirically with
the same degree of certainty as other scientific “truths.”
On this question, see Jammer, Concepts of Space, pp.
170-71, and Carl G. Hempel, “Geometry and Empir-
ical Science” (1945), in Readings in the Philosophy of
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The philosophical impact of non-Euclidean geometry in the nineteenth century was
far greater than simply its initial challenge to Kant. It substantially shook the foun-
dations of mathematics and science, branches of learning that for two thousand years
had depended on the truth of Euclid’s axioms.?* As a result, optimistic belief in man’s
ability to acquire absolute truth gradually gave way during the later nineteenth century
to a recognition of the relativity of knowledge. Coming full circle from its early days
as a tool of the empiricist, positivist Helmholtz, non-Euclidean geometry contributed
substantially to the demise of traditional positivism. For certain artists in the early
twentieth century, non-Euclidean geometry was to be synonymous with the rejection
of tradition and even with revolution.

The Popularization of n-Dimensional Geometry and the Fourth Dimension
in England and France

From a survey of Sommerville’s Bibliography of Non-Euclidean Geometry, Including
. . . Space of n Dimensions, England in the 1870s emerges as the first center of active
concern with the number of dimensions of space. This decade of development cul-
minated in 1884 in the publication of E. A. Abbott’s Flatland, the first example of
popular fiction about the fourth dimension. Abbott’s tale is based on the premise that
the meaning of the third dimension for a two-dimensional being compares to the
meaning of the fourth dimension for us. As noted above, this notion had been men-
tioned, if negatively, by Helmholtz in his discussions of geometrical axioms. Yet,
beyond Helmholtz’s passing reference, where might the theologian and educator Ab-
bott have encountered “the fourth dimension” and the associated analogy of a world
of two dimensions’

The question of why space should have three dimensions goes back at least to
Aristotle, who discussed it in his De caelo.>* Leibniz proposed geometric necessity as
the explanation: no more than three mutually perpendicular lines can meet at a point.
Kant likewise regarded the three dimensions of space as a synthetic a priori proposition
of geometry.?5 Yet, in several earlier writings he had referred to other possible spaces.3
In “On the First Grounds of the Distinction of Regions of Space” of 1769, Kant

Science, ed. Philip P. Wiener (New York: Charles cluding that of Aristotle and Leibniz, pp. 172-82. See

Scribner’s Sons, 1953), pp. 40-51. also Manning, Geometry of Four Dimensions, pp. 1-3,
33 On this, see, e.g., Morris Kline, Mathematics: A for other examples of early speculation on higher di-
Cultural Approach (Reading, Mass.: Addison-Wesley mensions.
Publishing Co., 1962), pp. 572-71. 35 Kant, Critique of Pure Reason, p. 70.
3 Jammer, Concepts of Space, p. 172; on the history 36 See Jammer, Concepts of Space, pp. 174-75.

of interest in the number of dimensions of space, in-
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speculated that the fundamental difference between a right hand and a left hand must
be due to their different orientation with respect to absolute space.” Later writers on
the fourth dimension, following the lead of Mdbius, would frequently use the three-
dimensional symmetry of a pair of hands as an argument for a fourth dimension of
space, through which one hand could be “turned” to coincide with the other.

But the fourth dimension of these early philosophers was only an unspoken impli-
cation, a far cry from its central importance in speculation about the nature of space
in England during the 1870s and 1880s. The first actual use of the term fourth dimension
appears to have been in seventeenth-century England in the circle of the Cambridge
Platonists around Henry More. However, the fourth dimension described in More’s
Enchiridion Metaphysicum of 1671 was not really a dimension of physical space, but
rather the location of the Platonic ideal.® As mentioned previously, d’Alembert and
Lagrange spoke of “une quatriéme dimension” in the eighteenth century, understanding
it simply as time.

Gustav Theodor Fechner, writing under the pseudonym of “Dr. Mises” in Vier
Paradoxa of 1846, may have published the first discussion of two-dimensional beings
unaware of the third dimension that surrounds them, suggesting the analogy of our
three-dimensional existence in a four-dimensional world. The two-dimensional “shadow
man” that Fechner presented in his satirical essay “Space Has Four Dimensions” was
a projection on paper made by a camera obscura.* Fechner also noted the tendency
of such figures, unaware of a third spatial dimension, to identify the effects of motion
perpendicular to their plane as time. This theme, the interrelationship of a fourth
dimension of space with time, was to become a major element in the hyperspace
philosophy developed by the Englishman Charles Howard Hinton in the 1880s.

However, a more direct impetus to the rise of English speculation on the number
of dimensions of space in the late 1860s was the biography of Gauss published by
Sartorius von Waltershausen in 1856, the year after the mathematician’s death.® J. ].

37 Jammer, Concepts of Space, p. 131. Kant also noted
in this text that only a mirror can transform a right
hand into a left hand. Martin Gardner discusses Kant’s
ideas and their four-dimensional implications in The
Ambidextrous Universe: Mirror Asymmetry and Time-
Reversed Worlds, 2nd rev. ed. (New York: Charles
Scribner’s Sons, 1979), ch. 17, “The Fourth Dimen-
sion,”

38 Richardson, Modern Art and Scientific Thought, p.
106. See also R. Zimmermann, Henry More und die
vierte Dimension des Raumes (Vienna: C. Gerolds Sohn,
1881).

39 See Fechner [Dr. Mises], “Der Raum hat vier Di-
mensionen,” in Vier Paradoxa (Leipzig: Leopold Voss,

1846), pp. 15-40. Fechner's text is discussed by Alex-
ander L. Taylor in The White Knight: A Study of C. L
Dodgson (Edinburgh: Oliver & Boyd, 1952), pp. 8-
90.

4 Although J.P.N. Land notes Fechner’s text in his
discussion of the two-dimensional analogy in “Kants
Space and Modern Mathematics,” Mind (London),
(1877), 43, and according to Taylor (n. 39 above),
the presence of Fechner’s colleague Max Miller at
Oxford would have made C. L. Dodgson and others
there aware of Vier Paradoxa, the Gauss-Helmholt
two-dimensional analogy is actually closer to the geo-
metric spirit of Flatand and the articles by English
mathematicians that preceded it.
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Sylvester in a December 1869 article in Nature recorded the statement by Gauss’s

biographer that

. . . this great man was used to say that he had laid aside several questions which
he had treated analytically, and hoped to apply to them geometrical methods in
a future state of existence, when his conceptions of space should have become
amplified and extended; for as we can conceive beings (like infinitely attenuated
book-worms in an infinitely thin sheet of paper) which possess only the notion
of space of two dimensions, so we may imagine beings capable of realising space
of four or a greater number of dimensions. 4!

Gauss’s two-dimensional analogy had been developed in the course of his study of
surfaces of curvature, and it was probably from Gauss that Helmholtz derived his model
of the two-dimensional sphere dwellers. Although Helmholtz’s concentration was also
on curved surfaces, he did introduce the topic with the general case of any solid body,
flat or curved.

The notion of a flat surface with two-dimensional beings living in it had already
been described in Sylvester’s article of 1869 when Helmholtz’s “The Axioms of Ge-
ometry” was published in a February 1870 issue of Academy. Sylvester’s article was the
first of a series of semipopular articles by scholars of higher dimensions to appear in
England and had been prompted by a remark of the biologist Thomas Huxley that
mathematics offered no chance for exercise of the imagination or for empirical veri-
fication. This challenge may explain the radical stance of Sylvester, who boldly ad-

vocated the existence of four-dimensional space:

Dr. Salmon, in his extensions of Chasles’ theory of characteristics to surfaces,
M. Clifford, in a question of probability . . . and myself in my theory of partitions,
. . . have all felt and given evidence of the practical utility of handling space of
four dimensions, as if it were conceivable space. . . . If Gauss, Cayley, Riemann,
Schalfli, Salmon, Clifford, Krénecker, have an inner assurance of the reality of
transcendental space, I strive to bring my faculties of mental vision into accord-

ance with theirs.4?

Following Sylvester, G. F. Rodwell sought to illustrate how our spatial perceptions
could be altered in “On Space of Four Dimensions,” published in Nature in May 1873.
Rodwell first described the gradual transformation of a man into a two-dimensional
being and analyzed the more limited ideas of space which would result. He then
suggested that if this process were to be reversed, using motion as the dimension-

41 Sylvester, “A Plea for the Mathematician,” Na- 42 ]bid., note.
ture (London), 1 (30 Dec. 1869), 238.
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adding factor, our ordinary space could be extended. Rodwell introduced his exposition
by quoting Sylvester’s statement about the group of prominent mathematicians with
an “inner assurance of the reality of transcendental space.”#

One impetus for the increased interest of mathematicians such as Sylvester in n-
dimensional space had undoubtedly been the initial publication in 1867 of Riemann's
1854 speech. William K. Clifford’s translation of Riemann’s speech appeared in Nature
in 1873, and Clifford himself produced articles on the subject of curved spaces.*
However, the discussion by Riemann of the possibility of non-Euclidean spaces of n
dimensions may also have caused the confusion that soon developed, identifying non-
Euclidean geometry with geometries of higher dimensions. In the sense that Euclid
dealt with only three dimensions of space, one might term n-dimensional geometry
“non-Euclidean,” but this usage is never employed in mathematics or in knowledgeable
lay treatments of the subject. N-dimensional geometry and non-Euclidean geometry
are two separate geometries, which can be combined, but are never necessarily so.
Nonetheless, a more specific connection between the curvature of non-Euclidean
geometry and higher dimensions was raised at this time by Clifford, the English disciple
of Riemann. Clifford’s interpretation was probably the major source for the mistaken
intermingling of the two geometries, which would occur at times in later popular
writings.

Sylvester’s 1869 article already referred to the research that Clifford was pursuing:

It is well known to those who have gone into these views, that the laws of motion
accepted as a fact suffice to prove in a general way that the space we live in is a
flat or level space (a “homaloid”), our existence therein being assimilable to the
life of the bookworm in a flat page; but what if the page should be undergoing a
process of gradual bending into a curved form? Mr. W. K. Clifford has indulged
in some remarkable speculations as to the possibility of our being able to infer,
from certain unexplained phenomena of light and magnetism, the fact of our
level space of three dimensions being in the act of undergoing in space of four
dimensions . . . a distortion analogous to the rumpling of the page.

The idea that a higher dimension is necessary for curvature to occur “into” it may
have seemed a logical inference from the case of the two-dimensional page. Yet, the
internal geometry of that two-dimensional space would remain two-dimensional. Only
when we wish to represent such a space from the outside, or “embed” it in Euclidean
space, is a higher dimension required.

4 Rodwell, “On Space of Four Dimensions,” Na- space in “On the Bending of Space,” The Common
ture, vii (1 May 1873), 9. Sense of the Exact Sciences (London: Kegan Paul, Trench
# Clifford’s major articles of the 1870s are in the & Co., 1886), pp. 215-26.
Bibliography, sec. I, B, 2. Clifford also discussed curved # Sylvester, “A Plea,” note, p. 238.
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Helmholtz himself had warned that “curvature” must be understood differently for
three-dimensional non-Euclidean spaces: “To prevent misunderstanding, I will once
more observe that this so-called measure of space-curvature is a quantity obtained by
purely analytical calculation, and that its introduction involves no suggestion of re-
lations that would have a meaning for sense-perception. The name is merely taken,
as a short expression for a complex relation, from the one case in which the quantity
designated admits of sensible representation” (e.g. from two-dimensional surface cur-
vature).* Although Helmholtz was specifically interested in precluding any talk of a
fourth dimension in connection with his models of non-Euclidean space, subsequent,
less partisan authors affirmed his view. Thus, Duncan Sommerville explained in his
1914 text The Elements of Non-Euclidean Geometry, “The use of the term ‘space-
curvature’ has led to the idea that non-euclidean geometry of three dimensions nec-
essarily implies space of four dimensions, for curvature of space has no meaning except
in relation to a fourth dimension. But when we assert that space has only three
dimensions, we thereby deny that space has four dimensions. . . . The origin of the
fallacy lies in the failure to recognise that the geometry on a curved space is nothing
but a representation of the non-euclidean geometry.”#” And in his 1897 Essay on the
Foundations of Geometry Bertrand Russell had suggested the use of the phrase space
constant instead of measure of curvature, as a reminder of the analytical nature of this
idea.*® However, despite the denials by Helmholtz and others of a necessary connection
between non-Euclidean geometry and the fourth dimension, the ideas would continue
to be linked at times in popular literature.

Besides the English mathematicians writing in the 1870s, another source for Abbott’s
thinking about two-dimensional beings could have been a pamphlet by the Reverend
Charles L. Dodgson, better known as Lewis Carroll. A lecturer in mathematics at
Oxford, Dodgson had introduced his 1865 text Dynamics of a Parti-cle by positing a
romance between a pair of linear, one-eyed creatures gliding over a flat surface.
According to Dodgson, the two young lovers know that, having been intersected by
a line “making the two interior angles . . . less than two right angles,” they “shall at
length meet if continually produced.”® Although Dodgson himself may have been
stimulated by Fechner’s Vier Paradoxa example, he was hardly advocating higher di-

4 Helmholtz, “On the Origin and Significance,” pp.
47-48.

47 Sommerville, The Elements of Non-Euclidean Ge-
ometry (London: G. Bell & Sons, 1914), pp. 16-17.

4 Russell, Foundations of Geometry, pp. 16-17. For
other twentieth-century discussions of this problem,
see Henry Parker Manning, ed., The Fourth Dimension
Simply Explained: A Collection of Essays Selected from
Those Submitted in the “‘Scientific American” ’s Prize

Competition (New York: Munn & Co., 1910), p. 12;
d’Abro, The Evolution of Scientific Thought, ch. 5; and
Stephen F. Barker, Philosophy of Mathematics (Engle-
wood Cliffs, N.].: Prentice-Hall, 1964), p. 37. It should
be remembered that Einstein’s space-time continuum
is itself a four-dimensional non-Euclidean structure,
with no talk by Einstein of its being “curved into”
spaces of higher dimensions.

4 Dodgson, The Dynamics of a Parti-cle, with an Ex-
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mensions at this stage of his career. A conservative in mathematics, Dodgson in his
Dynamics of a Parti-cle introduction was primarily concerned with Euclid’s paralle]
postulate. Similarly, his subsequent exploration of mirror images and symmetry in
Through the Looking Glass of 1872, with their four-dimensional implications, stands as
a comment on contemporary English fascination with higher dimensions rather than
a sign of his own belief in the idea.>

If Dodgson simply found humorous possibilities in a fourth dimension and Helmholt;
denied in his 1876 Mind article that an individual could ever “represent” the fourth
dimension to himself, the reality of higher dimensions was soon being proclaimed in
London by J.C.F. Zéllner, a physicist and astronomer from Leipzig. Zollner had been
convinced of the existence of the fourth dimension by the feats of the American
medium Henry Slade. A number of later authors have credited Zollner with the single-
handed popularization of the fourth dimension,! but this view is oversimplified. Never-
theless, the controversy generated by Zollner’s support of Slade in London brought
the fourth dimension such notoriety that later defenders of higher dimensions of space
often felt it necessary to disassociate themselves from Zollner and the spiritualist
connection.

Zollner published two works in London: an article, “On Space of Four Dimensions,”
in The Quarterly Journal of Science (April 1878) and an 1880 translation of the third
book of his Wissenschaftliche Abhandlungen (1878), Transcendental Physics. The article
concludes with a specific statement of support for Slade against his accusers, who had
recently had him convicted of “using ‘subtle crafts and devices, by palmistry and

cursus on the New Method of Evaluation, as Applied to
7 (Oxford: J. Vincent, 1865), p. iii. Dodgson’s text,
the main body of which has little relation to the theme
of the introduction, is discussed in The Magic of Lewis
Carroll, ed. John Fisher (New York: Bramhall House,
1973), pp. 10-11, as well as Taylor, The White Knight,
pp. 68-69, 93. See again n. 40 above on Dodgson and
Fechner.

50 Dodgson’s conservatism in mathematics is appar-
ent in such texts as Euclid and His Modern Rivals (1879)
and Curiosa Mathematica (1888). On Dodgson, mir-
rors, and symmetry, see Martin Gardner, ed., The An-
notated Alice: ‘‘Alice’s Adventures in Wonderland” and
“Through the Looking Glass” by Lewis Carroll (New
York: Bramhall House, 1960), pp. 180-83, as well as
Gardner, Ambidextrous Universe, pp. 5, 69, 114. Au-
thors closer to Dodgson’s era recognized more readily
the four-dimensional overtones of his fiction. For ex-
ample, Samuel M. Barton, writing in The Popular Sci-
ence Monthly in October 1913, states, “Readers of the

classic nonsense book by Lewis Carroll (Rev. C. L.
Dodgson), ‘Alice Behind the Looking Glass, will be
interested in the fact that Mr. Dodgson, himself 2
mathematician of no mean note, is poking fun at the
fourth dimension students” (p. 388). Later in his life
Dodgson mellowed in his attitude toward the occult
(and, presumably, the fourth dimension) and in 1883
was included on the first list of members of the newly
formed Society for Psychical Research (Taylor, The
White Knight, p. 179).

51 See especially Hermann Schubert, “The Fourth
Dimension” (1893), in Mathematical Essays and Rec:
reations, trans. Thomas J. McCormack (Chicago: Open
Court, 1898), pp. 64-111. Several of the essays sub-
mitted in the Scientific American essay contest of 1909
also discuss Zollner in these terms. See, e.g., Louis W.
Worrell, “Characteristics of the Fourth Dimension,”
in The Fourth Dimension Simply Explained, ed. Man-
ning, p. 145.
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otherwise,” to deceive Professor E. Ray Lankester, F.R.S., and certain others.”? For
English advocates of spiritualism, such as Sir William Crookes, the editor of The
Quarterly Journal of Science, and C. C. Massey, who translated Transcendental Physics,
Zollner's “scientific” insights were most welcome.

Zollner’s union of spiritualism and science to prove empirically the existence of a
fourth dimension was unusual in the history of the concept. Unlike later mystically
oriented supporters of the fourth dimension who scorned positivist science for its
limitation to immediately observable phenomena, Zéllner managed to encompass both
points of view. While maintaining elsewhere that the fourth dimension might be the
location of Kant’s unknowable “thing-in-itself,”>> Zollner concluded his article’s in-
troductory argument by asserting, “It follows that the real existence of four-dimensional
space can only be decided by experience, i.e., by observation of facts.”5*

Zollner’s “facts” were provided by the experiments he conducted with the medium
Slade in 1877. The scientific import of those experimental séances was enhanced by
the presence of several of Zéllner’s colleagues, including Fechner and Wilhelm Weber,
all of whom he describes as “perfectly convinced of the reality of the observed facts,
altogether excluding imposture or prestidigitation.” The experiment which assured
Zollner that a higher dimension of space existed was Slade’s untying a knotted cord
whose ends were sealed together, without ever touching the cord. According to Zéllner,
a fourth dimension of space must be posited to account for such a seemingly impossible
occurrence: “The moment we observe in three-dimensional space contradictory facts,—
i.e., facts which would force us to ascribe to a body two attributes or qualities which
hitherto we thought could not exist together,—the moment, I say, in which we should
observe such contradictory facts in a three-dimensioned body, our reason would at
once be forced to reconcile these contradictions.”>’

Additional experimental séances were conducted, with Slade joining solid wooden
rings together, transporting objects out of closed three-dimensional containers, and,
as his most masterful act, obtaining writing on paper placed within two slates securely
sealed together.%¢ Zollner was thoroughly convinced by Slade’s feats, and without a
doubt his enthusiastic reporting of their every detail made both friends and enemies
for the fourth dimension in England. Although his results must be termed pseudo-

52 Charles Carleton Massey, Introduction to Zoll-
ner, Transcendental Physics: An Account of Experimental
Investigations from the Scientific Treatises of Johann Carl
Friedrich Zollner (1878), trans. Massey (London: W. H.
Harrison, 1880), p. xxix.

53 L.-Gustave du Pasquier discussed this aspect of
Zosllner's thought in his inaugural address at the Uni-
versity of Neuchatel, 23 April 1912: La Quatriéme

Dimension et le développement de la notion d’espace (Neu-
chatel: n.p., 1912), p. 12.

54 Z6llner, “On Space of Four Dimensions,” The
Quarterly Journal of Science, n.s., vit (Apr. 1878), 232.

55 Ibid., pp. 235, 229.

56 See Zollner, Transcendental Physics, for a thorough
description of all the séances with Slade.
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scientific at best, Zollner’s activities focused the attention of many people on the
fourth dimension, further paving the way for Abbott’s Flatland of 1884.

In the light of these developments, E. A. Abbott’s two-dimensional “flatland” can
be recognized as the progeny of Gauss'’s original notion, popularized by Helmholtz and
the English mathematicians writing in Nature and other magazines. As the subtitle of
Flatland: A Romance of Many Dimensions by a Square suggests, the hero of Abbott’s
charming story is a Square, a commoner in Flatland where all the citizens are figures
from plane geometry. The women are straight lines, while the men vary in social rank
according to the number of their sides, progressing from lowly squares, through polygons
of increasing importance, to perfect circles who are priests. In Flatland it is strictly
forbidden to think, much less to speak, of a third dimension.

One night, Abbott’s hero, the Square, is visited by a Sphere from the Land of Three
Dimensions, who materializes within his home, appearing first as a point and then as
ever-increasing circles as it passes into the plane of Flatland. When the Square is
lifted up by the Sphere, he, too, can see the wonders of the three-dimensional world
and is so impressed that he soon inquires of the Sphere,

But my Lord has shown me the intestines of all my countrymen in the Land of
Two Dimensions by taking me with him into the Land of Three. What therefore
more easy than now to take his servant on a second journey into the blessed
region of the Fourth Dimension, where I shall look down with him once more
upon this land of Three Dimensions, and see the inside of every three-dimensional
house, the secrets of the solid earth, the treasures of the mines in Spaceland,
and the intestines of every solid living creature, even of the noble and adorable
Spheres.*?

Abbott reveals his own familiarity with certain aspects of n-dimensional geometry
in his description of the Square’s further pleading with the Sphere, who hardly ap-
preciates the Square’s new-found open-mindedness:

Or if it indeed be so, that this other Space is really Thoughtland, then take me
to that blessed Region where [ in Thought shall see the insides of all solid things.
There, before my ravished eye a Cube, moving in some altogether new direction,
but strictly according to Analogy, so as to make every particle of his interior pass
through a new kind of Space with a wake of its own, shall create a still more
perfect perfection than himself, with sixteen terminal Extra-solid angles, and
Eight solid Cubes for his Perimeter. And once there, shall we stay our upward

57 [Edwin Abbott Abbott], Flatland: A Romance of 1884). Edition used is Boston: Roberts Brothers, 1885,
Many Dimensions by a Square (London: Seeley & Co., p. 135.
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course! In that blessed region of Four Dimensions, shall we linger on the threshold
of the Fifth, and not enter therein? Ah, no! Let us rather resolve that our ambition
shall soar with our corporal ascent. Then, yielding to our intellectual onset, the
gates of the Sixth Dimension shall fly open, after that a Seventh, and then an
Eighth—

Unfortunately for the Square, talk of the fourth dimension is as strictly outlawed in
the Land of Three Dimensions as the discussion of a third dimension had been in
Flatland. The angry Sphere hurls the Square back down to Flatland where he is
ultimately imprisoned for his tales of a third dimension.

Abbott’s humorous message to three-dimensional Spheres and people who refused
to admit even the possibility of a fourth dimension was quite clear. Flatland achieved
instant success, with a second edition in 1884 and nine successive reprintings by 1915.
Although the book was not translated into French, it was known in Paris, for E. Jouffret
discusses the two-dimensional analogy and cites Flatland in his 1903 Traité élémentaire
de géométrie a quatre dimensions, a book known to Duchamp and certain of his Cubist
friends.>°

In addition to popular literature in the tradition of Abbott, three other uses of the
fourth dimension contributed to the spread of knowledge about it in nineteenth-century
England and elsewhere: (1) a type of popular philosophy concerned with the fourth
dimension, which I term hyperspace philosophy;®° (2) Theosophy; and (3) science fiction
tales and fantasies by H. G. Wells and others.

Writers of hyperspace philosophy believe firmly in the reality of a fourth dimension
of space, yet tend to oppose any form of positivism that requires empirical proof of its
existence. Their underlying theme is generally that the answer to the evils of positivism
and materialism is for man to develop his powers of intuition, in order to “perceive”
the fourth dimension of our world, the true reality. Hyperspace philosophy is an idealist
position, and its proponents frequently refer to Plato’s world of ideas or Kant’s un-
knowable noumenon, the “thing-in-itself.” Just as the more mystical bent of mind
characteristic of hyperspace philosophy owes something to Zéllner’s connection of the
fourth dimension with spiritualism, hyperspace philosophy later takes on elements of
the occult and at times unites with Theosophy.

The first true hyperspace philosopher was the Englishman Charles Howard Hinton,

5 Ibid., pp. 138-39. Traité is discussed below in chs. 2 and 3.

% E[sprit Pascal] Jouffret, Traité élémentaire de géo- 6 [ find this a useful means for characterizing writers
métrie d quatre dimensions (Paris: Gauthier-Villars, 1903), from Hinton to Bragdon and Ouspensky, as opposed
p. 187. Jouffret also mentions Abbott in his Mélanges to authors of more straightforward mathematical ex-
de géométrie & quatre dimensions (Paris: Gauthier-Vil- positions of the fourth dimension.

lars, 1906), note, p. 216. Artistic interest in Jouffret’s
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who began in 1880 publishing a series of articles and books on “the new era of thought,”
as he described it. Hyperspace philosophy later reached its most developed stage in
the writings of P. D. Ouspensky in prerevolutionary Russia and, in fact, a direct link
can be made from Hinton, through Ouspensky, to the Russian Futurist painters and
poets. Although Hinton's books seem not to have been translated into French, s
they were into Russian, his ideas were also known in Paris. Several authors, from
Jouffret in his 1903 geometry text to L. Revel in an article in Le Théosophe of 1911,
discuss Hinton’s views on the fourth dimension.®! Nor was the American avant-garde
untouched by Hinton’s ideas after he settled in the United States in the 1890s. Before
his death in 1907, Hinton had gained a loyal follower in Gelett Burgess, who in tum
shared Hinton's views with Claude Bragdon, later America’s foremost theorist on the
fourth dimension.

Most of the appreciation for Hinton, however, came after his death. During his
lifetime Hinton, who had been trained in mathematics and physics at Oxford, never
achieved prominence equal to that of his father, the noted English surgeon and liberal
thinker James Hinton. Following a brief teaching career in England, Hinton in 1887
left his homeland for Japan, where he served for several years as the headmaster of
the Victoria Public School in Yokohama and later worked for the Bureau of Mines.
In 1892 he and his family settled in the United States, and he subsequently taught
mathematics at Princeton University from 1893 to 1897 and at the University of
Minnesota from 1897 to 1900. During 1901 and early 1902 Hinton was employed at
the United States Naval Observatory, hired undoubtedly through the efforts of its
recently retired director, Simon Newcomb, who was a prominent American advocate
of n-dimensional geometry. By June 1902 Hinton had taken a job in the United States
Patent Office in Washington D.C., where he was to work until his death in April
1907.62

61 Revel’s article, “L’Esprit et 'espace: La Quatriéme
Dimension,” Le Théosophe, u1 (16 Mar. 1911), 2, and
other popular reflections of Hinton’s ideas in Paris are
discussed in ch. 2.

62 Born in 1853, Hinton earned a B.A. at Oxford
in 1877 and an M.A. in 1886, at which time he was
listed as the Assistant Master of Cheltenham College
(Alumni Oxoniensis: The Members of the University of
Oxford, 1715-1886, 4 vols., u [London: Joseph Foster,
1888], 666. The best source of biographical informa-
tion on Hinton is the obituary written by his friend
Gelett Burgess, “The Late Charles H. Hinton: Phi-
losopher of the Fourth Dimension and Inventor of the
Baseball Gun,” New York Sun, 5 May 1907, p. 8. See
also the brief obituary in the New York Times, 2 May

1907, p. 11. See a recent M.A. thesis, Marvin H.
Ballard, “The Life and Thought of Charles Howard
Hinton” (Virginia Polytechnic Institute and State
University, 1980), for a great deal of new information
on Hinton, gleaned from sources such as certain pub-
lications of the University of Minnesota. For example,
the Minnesota yearbook, The Gopher, xu (1899), 37,
states that Hinton studied physics briefly in Berlin after
completing his B.A. in 1876, suggesting that he might
have encountered the ideas of Fechner, Helmholt,
and Zollner in Germany. For details of Hinton’s career,
see Ballard, “The Life and Thought,” pp. 14-17, 46,
49, 51, 73, 76-717, 85, 91.

Hinton’s abrupt departure from England sometime
after October 1886 was the result of his trial and three-
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Letters from Hinton to the psychologist and philosopher William James, written
during the years 1892 to about 1906, provide an important record of Hinton’s thinking
once he left England. James was one of the few American intellectuals interested in
Hinton's views on the fourth dimension, and a tone of discouragement frequently
manifests itself in the letters addressed to James. “Nobody here will print anything
which I have written,” Hinton wrote on 8 October 1892.9 Hinton’s letters also make
clear his commitment to creating a physical method for perceiving higher spatial
dimensions, as opposed to the far easier mathematician’s technique of manipulating
symbols. Hinton’s belief in the possibility of enlarging man’s “space sense” is a constant
theme in his hyperspace philosophy.

Hinton’s first article, “What Is the Fourth Dimension?,” had been published in the
Dublin University Magazine in 1880 and included a discussion of a two-dimensional
world, which may have been yet another forerunner of Abbott’s Flatland. Other versions
of this basic exposition of the fourth dimension were printed separately in London in
1884 and incorporated into Hinton’s volume of Scientific Romances, published in 1884-
1885 and again in 1886. A later volume of Scientific Romances (1895) resembled the
1886 book in its combination of hyperspace-philosophy essays and fictional tales of
the fourth dimension. Hinton had left England before his first major text, A New Era
of Thought, was published there in 1888.5 Once in the United States, Hinton published
several articles on the fourth dimension, both mathematical and popular, as well as
The Fourth Dimension of 1904. His final work was An Episode of Flatland (1907), an

elaboration upon Abbott’s theme with greater emphasis on drama and even definite

religious overtones. %°

(New York: Arno Press, 1976), as well as Ballard, “The
Life and Thought,” pp. 42-44.

6 Hinton letter to James, 8 Oct. 1892, William
James Archive, Houghton Library, Harvard Univer-
sity. Robert C. Williams first noted the existence of
this correspondence in Artists in Revolution, p. 217, n.
18. The reviews of the 1904 The Fourth Dimension dem-
onstrate the mixed reaction of Hinton’s contempo-
raries to his ideas. Although Hinton added a page of
favorable comments from reviews of the book to its
second edition (1906), far less complimentary views

day imprisonment for bigamy at that time. Hinton had
undoubtedly been affected by his father’s advocacy of
freer sexual mores and even polygamy, views that made
James Hinton the center of a circle of freethinking
followers. The younger Hinton had, in fact, married
the daughter of a member of this circle, Mary Everest
Boole, widow of the mathematician George Boole.
Both mother and daughter remained loyal to C. H.
Hinton after the events of October 1886; Mary Hinton
declined to press charges against her husband and ac-
companied him to Japan and America, and Mary E.

Boole continued as a vocal supporter of Hinton’s the-
ories on four-dimensional space. Furthermore, his sis-
ter-in-law, Alicia Boole, edited the manuscript for A
New Era of Thought that Hinton left behind in Eng-
land. On the James Hinton circle (which later in-
cluded Havelock Ellis after the elder Hinton’s death)
and on Hinton's bigamous marriage, see James Webb’s
introduction to Hinton, Scientific Romances, reprint ed.

had been expressed by Bertrand Russell in Mind, n.s.,
xir (Oct. 1904), 268.

¢4 See Alicia Boole and H. John Falk, Introduction
to Hinton, A New Era of Thought (London: Swan
Sonnenschein & Co., 1888), p. v.

¢ For a listing of Hinton's publications, see Bibli-
ography, sec. I, B, 2. Ballard, “The Life and Thought,”
discusses several additional articles by Hinton on non-
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Hinton set forth his hyperspace philosophy most completely in the two volumes A
New Era of Thought and The Fourth Dimension. Whereas Kant’s interpretation of space
as the a priori framework necessary for all perceptions had frequently been felt as a
negative restraint by later commentators, Hinton suggests that our very dependence
on space has a favorable aspect.® If it is through spatial intuition that we apprehend
the world, we can work specifically on that space sense and develop it in order to
intuit new kinds of space. Unlike the geometers of the empiricist school who saw Kant
discredited by non-Euclidean geometry, Hinton credits Kant with identifying space as
our means of cognizing the world. The three-dimensional Euclidean form Kant assumed
for space was simply a temporary plateau in the course of man’s development of spatial
intuition, and Hinton’s system would now provide the means for the next step upward.

A New Era of Thought introduces Hinton’s belief that the root of our limited space
sense is in “self elements” in each of us which reinforce our traditional ways of seeing
things (e.g., as up or down or as left or right). The desired “casting out of self” is to
be achieved through the careful, selfless study of an arrangement of objects. Hinton
had settled on blocks of multicolored cubes as the best tools for concentrated analysis,
a convenient choice since the same cubes were the basis for his system of learning to
visualize the four-dimensional hypercube, or “tesseract,” as he called it.

Both A New Era of Thought and The Fourth Dimension are basically descriptions of
Hinton’s work with the tesseract, which is noteworthy as the first nongeometric attempt
to portray the fourth dimension. Although Hinton did write several scholarly articles
on n-dimensional geometry, his real interest was in teaching the public the non-
mathematical system he had devised. The frontispiece of The Fourth Dimension (Fig.
7) was in color, to help readers visualize the intricate combinations of the cubes
Hinton would form into even more complex arrangements than the tesseract. The
preface to A New Era of Thought advertises that models of the colored cubes used in
the exercises can be bought from the publisher, Swan Sonnenschein & Co., a virtual
necessity since no color plates were provided in that volume.®

Hinton conceived the tesseract by means of the sections that would be formed when
it passed through three-dimensional space. Just as a sphere passing through a plane
produces a series of increasing and then decreasing circles, which would be experienced
by a plane dweller as movement in time, Hinton’s method produces a time-oriented
vision of a four-dimensional body. The colored cubes already introduced are to be the
“sections” of the four-dimensional hypercube. We are to “see” the sections of the
tesseract as they pass through our space, and the patterns of changing colors are the

geometric subjects ranging from his invention of a chapters of A New Era of Thought.
baseball pitching “gun” to “Yoga Philosophy.” 67 See Hinton, A New Era, p. vi.
6 Hinton’s views on Kant are set forth in the first
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means of recognizing the position of the tesseract and its component cubes at any
moment. Hinton continually emphasized the crucial role of time in his system: “All
attempts to visualize a fourth dimension are futile. It must be connected with a time
experience in three space [three-dimensional space].”®

Hinton was convinced his system had the power to revolutionize modes of vision

in contemporary society:

Here, for the first time, the fact of the power of conception of four-dimensional
space is demonstrated, and the means of educating it are given.

And [ propose a complete system of work, of which the volume on four space
is the first instalment.

I shall bring forward a complete system of four-dimensional thought—me-
chanics, science, and art. The necessary condition is, that the mind acquire the
power of using four-dimensional space as it now does three-dimensional.

And there is a condition which is no less important. We can never see, for
instance, four-dimensional pictures with our bodily eyes, but we can with our
mental and inner eye. The condition is, that we should acquire the power of
mentally carrying a great number of details.

If, for instance, we could think of the human body right down to every minute
part in its right position, and conceive its aspect, we should have a four-dimen-
sional picture which is a solid structure. Now, to do this, we must form the habit
of mental painting, that is, of putting definite colours in definite positions, not
with our hands on paper, but with our minds in thought, so that we can recall,
alter, and view complicated arrangements of colour existing in thought with the
same ease with which we can paint on canvas. This is simply an affair of industry;
and the mental power latent in us in this direction is simply marvellous.

In any picture, a stroke of the brush put on without thought is valueless. The
artist is not conscious of the thought process he goes through. For our purpose
it is necessary that the manipulation of colour and form which the artist goes
through unconsciously, should become a conscious power, and that, at whatever
sacrifice of immediate beauty, the art of mental painting should exist beside our
more unconscious art.’

% Hinton, The Fourth Dimension (London: Swan
Sonnenschein & Co., 1904; New York: John Lane,
1904), p. 207. Fechner preceded Hinton in noting the
interconnection between time and space, and Hinton
may well have known Vier Paradoxa. Hinton evidently
visualized his tesseract in the form of the popular cru-
ciform “hypercube” discussed earlier (Fig. 5). To Hin-
ton’s credit is his addition of at least twenty-six colors

to each of the cubes, thereby reminding readers of the
inadequacy of the simple line drawing of the hyper-
cube. In the end, however, Hinton’s system was ex-
tremely complex, and it seems probable that few in-
dividuals apart from the author himself ever achieved

much success with it.
% Hinton, A New Era, pp. 86-87.
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The proposed “complete system of four-dimensional thought—mechanics, science,
and art,” was never finished by Hinton, and further discussion of art is conspicuously
absent from his writings. Although his use of the painting metaphor in this passage
is indeed fascinating and his emphasis on the artist’s mind parallels later Cubist though,
Hinton's influence was not primarily visual, a fact due undoubtedly to the difficult
nature of the tesseract model system. Instead, Hinton’s important contribution was
his philosophical interpretation of the fourth dimension, which was accompanied by
his suggestions of its meaning for a science freed from the constraints of traditional
positivism.

The philosophic and scientific ideas about the fourth dimension that Hinton pre-
sented initially in his articles and books recur frequently in later popular treatments
of the fourth dimension. Two chapters of The Fourth Dimension present the “History
of Four Space,” tracing evidences of belief in the existence of higher dimensions back
beyond Plato and Aristotle. Plato’s allegory of the prisoners chained in a cave, who
saw only shadows on a wall and never knew of the beings creating those shadows,
offered Hinton and others an even closer analogy to the question of higher dimensions
than it had to Plato’s world of ideas. The association of the fourth dimension with
the Platonic ideal and, subsequently, with Kant’s “thing-in-itself” was to become a
standard feature of hyperspace philosophy. Unlike the vague fourth dimension of
Platonist Henry More in the seventeenth century, the fourth dimension of hyperspace
philosophy was specifically a dimension of space where the “thing-in-itself” would be
revealed.

In the idealism of hyperspace philosophy it is the absence of the fourth dimension
in perception that flaws our image of true reality and limits us to a three-dimensional
world of appearances. For Hinton, “we must really be four-dimensional creatures or
we could not think about four dimensions.”” Perhaps, he suggests, our successive
states are the passing of our four-dimensional being through the three-dimensional
space in which our consciousness seems confined, or possibly our extension in the
fourth dimension is so “thin” that it escapes our senses. According to Hinton and
later writers, if a fourth dimension of space does exist, the three-dimensional world
must possess a slight extension in this fourth dimension; otherwise, our world would
be merely a geometrical abstraction analogous to a two-dimensional plane without
even the thickness of a sheet of paper.”!

Hinton believed that the idea of a small extension in four-dimensional space could
be useful for scientists studying minute particles of matter, for in the infinitesimal the

© Ibid., p. 99. 28, 33-34. See also “The Fourth Dimension,” Harper's
" Hinton, “What Is the Fourth Dimension?” Dublin Monthly Magazine, cix (July 1904), 230-31.
University Magazine (Dublin and London), xcvr (1880),
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dimensions in all four directions would be more comparable. The one scientist Hinton
actually discusses is Lord Kelvin, whose theory of atoms as vortex rings of the ether
and other unusual notions fascinated many observers of science in the late nineteenth
century. Although the fourth dimension had played no part in Kelvin’s work with
vortices, Hinton suggests that particles of ether in four dimensional movement would
produce a vortex with characteristics similar to electric current. Thus, in Hinton’s
view electricity may well be a four-dimensional phenomenon, and he reinforces his
theory by pointing out that positive and negative electric currents could only be made
to coincide by moving them through a fourth dimension.” Hinton in the tradition
of Kant also discusses organic, right- and left-handed symmetry as evidence that a
higher dimension of space must exist.

Finally, in a broader view, Hinton proposes that the ether itself may be a surface
of contact shared by two four-dimensional existences.” Just as two-dimensional beings
could exist in the plane formed as the common boundary of two adjacent cubes,
without ever perceiving their three-dimensional extensions, we may live in a three-
dimensional ether generated through the contact of two four-dimensional bodies. Even
if the majority of Hinton’s hypotheses have survived no better than has the ether,?
his theories had a widespread impact on early twentieth-century advocates of “the
fourth dimension” and contributed substantially to the body of beliefs on the subject
then being codified.

A second major impetus for a widening interest in higher dimensions of space was
Theosophy. In 1888, the year in which Hinton’s A New Era of Thought appeared,
Helena Petrovna Blavatsky published in London The Secret Doctrine, her second major
Theosophical treatise. Madame Blavatsky, the moving force behind Theosophy, had
produced her first two-volume opus, Isis Unveiled, in 1877, but not until The Secret
Doctrine does she refer even in passing to the fourth dimension. However, with her
own Theosophical doctrines fully developed by this time, Madame Blavatsky found
no place for the fourth dimension in Theosophy. Her position is in marked contrast
to that of later Theosophists, writing after the fourth dimension had gained a degree
of popularity. As early as the 1890s, Theosophy’s antipositivist stance made it strikingly

2 Hinton, The Fourth Dimension, pp. 17-18, 84. ” Hinton, A New Era, p. 53.
Gardner, Ambidextrous Universe, pp. 223-28, notes the 7 For the history of the “luminiferous ether,” which
remarkably prophetic nature of Hinton’s ideas on pos- passed out of the mainstream of scientific thought with
itive and negative charges as mirror images. Even though the acceptance of Einstein’s Special Theory of Rela-
Hinton's theory of electricity as a vortex in the ether tivity after World War I, see Sir Edmund Whitaker,
was hardly accurate, certain of his conclusions about A History of the Theories of Ether and Electricity, 2 vols.
symmetry (e.g., “twists” and “image twists”) sound (London: Thomas Nelson & Sons, 1951, 1953). On
much like mid-twentieth-century speculation in par- the subsequent fate of the ether, see Appendix A, n.

ticle physics on matter and antimatter. 28.
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similar to hyperspace philosophy, and in 1895 the Theosophist C. W. Leadbeater
would compare the Theosophical idea of “astral vision” to four-dimensional sight.”
Madame Blavatsky herself believed that the idea of a fourth dimension of space was

misconceived:

The processes of natural development which we are now considering will at once
elucidate and discredit the fashion of speculating on the attributes of the two,
three, and four or more “dimensional Space”; but in passing, it is worth while to
point out the real significance of the sound but incomplete intuition that has
prompted—among Spiritualists and Theosophists, and several great men of Sci-
ence, for the matter of that—the use of the modern expression, “the fourth
dimension of Space.” To begin with, of course, the superficial absurdity of as-
suming that Space itself is measurable in any direction is of little consequence.
The familiar phrase can only be an abbreviation of the fuller form—the “Fourth
dimension of MATTER in Space.” But it is an unhappy phrase even thus expanded,
because while it is perfectly true that the progress of evolution may be destined
to introduce us to new characteristics of matter, those with which we are already
familiar are really more numerous than the three dimensions. . . . [T]hus, when
some bold thinkers have been thirsting for a fourth dimension to explain the
passage of matter through matter, and the production of knots upon an endless

cord, what they were really in want of, was a sixth characteristic of matter.™

Blavatsky cites Professor Zollner in a footnote to this passage and his association with
Theosophy was to continue. Wassily Kandinsky, for instance, owned a copy of Z6lIner's
Die transcendentale Physik und die sogenannte Philosophie and cited this book in his
strongly Theosophically oriented text of 1912, Concerning the Spiritual in Art.”” Madame
Blavatsky notwithstanding, many Theosophists became actively interested in the fourth
dimension. Like Kandinsky, FrantiSek Kupka and Piet Mondrian were naturally sym-
pathetic toward the fourth dimension because of their Theosophical beliefs. For Kupka,
in fact, a number of contemporary sources in Paris emphasized the parallels between
higher dimensionality and Theosophical doctrine. Even more importantly, two of the
major hyperspace philosophers of the twentieth century, the American Claude Bragdon

5 On Theosophy, see Bruce F. Campbell, Ancient
Wisdom Revived: A History of the Theosophical Move-
ment (Berkeley: University of California Press, 1980);
for Leadbeater’s discussion, see Clharles] W[ebster]
Leadbeater, The Astral Plane: Its Scenery, Inhabitants,
and Phenomena (1895) (London: Theosophical Pub-
lishing House, [1910]), p. 19.

% Blavatsky, The Secret Doctrine (London: The
Theosophical Publishing Co., 1888; reprint ed. Los
Angeles: The Theosophy Co., 1925), p. 251.

" Kandinsky, Concerning the Spiritual in Art (1912),
retrans. Francis Golffing, Michael Harrison, and Fer
dinand Ostertag (New York: Wittenborn, Schultz
1947), p. 32.
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and the Russian P. D. Ouspensky, came to the fourth dimension with backgrounds
in Theosophy.

The final major vehicle for popularizing the fourth dimension in the late nineteenth
century was the science fiction of H. G. Wells, who, with his French disciple Gaston
de Pawlowski and certain other authors, found in the notion a particular appeal. Not
only was it a popular fascination, but the idea of the fourth dimension as a place or
as a temporal means of reaching another era provided a position from which to comment
on contemporary society. This was clearly Wells’s purpose in his 1895 tale The Time
Machine, although other of his stories rely simply on the mysterious properties of four-
dimensional space.

Wells is thought to have first encountered the idea of a fourth dimension while
attending the Royal College of Science from 1884 to 1887.7 Interest in higher di-
mensions among students at the Royal College is documented by a paper entitled
“Fourth Dimension” by Wells’s fellow student E. A. Hamilton Gordon, reprinted in
the Science Schools Journal in April 1887. The next year Wells’s prototype for The
Time Machine, “The Chronic Argonauts,” was published in the same journal. Early
drafts of the book appeared serially in the National Observer in 1894 and in the New
Review in early 1895.7 In addition to his probable English sources, such as Hinton
and Abbott, Wells by 1894 was also aware of the work of the American mathematician
Simon Newcomb, who is cited in The Time Machine.%

In the tradition of d’Alembert and undoubtedly extrapolating from hyperspace phi-
losophy, Wells treats time itself as the fourth dimension. However, his “Time Trav-
eller” does discuss geometries of higher dimensions in explaining the fourth dimension
to his friends at the beginning of the story. In support of his theory that it is possible
to move about in time as one does in space, the Time Traveller asserts,

Clearly, . . . any real body must have extension in four directions: it must have
Length, Breadth, Thickness, and—Duration. But through a natural infirmity of
the flesh, which I will explain to you in a moment, we incline to overlook this

78 Bernard Bergonzi, The Early H. G. Wells: A Study M. Philmus and David Y. Hughes (Berkeley: Univer-

of the Scientific Romances (Toronto: University of To-
ronto Press, 1961), pp. 25, 31. Bergonzi provides an
account of Wells’s introduction to the fourth dimen-
sion at South Kensington, although he seems unaware
of the complex series of events behind the rise of “the
fourth dimension” in England.

™ Bergonzi reprints “The Chronic Argonauts” as an
appendix to The Early H. G. Wells. For the National
Observer and New Review versions, see H. G. Wells:
Early Whritings in Science and Science Fiction, ed. Robert

sity of California Press, 1975), pp. 57-61, 91-95. Phil-
mus and Hughes provide further background for Wells’s
ideas and do cite Abbott and the 1884 printing of
Hinton’s “What s the Fourth Dimension?” (pp. 47-
49).

80 Wells, The Time Machine: An Invention (London:
W. Heinemann, 1895), p. 3. Philmus and Hughes cite
Newcomb’s article, “Modern Mathematical Thought,”
Nature, xLix (1 Feb. 1894), 325-29, as Wells’s im-
mediate source (H. G. Wells, p. 49, n. 5).
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fact. There are really four dimensions, three which we call the three planes of
Space, and a fourth, Time. There is however, a tendency to draw an unreal
distinction between the former three dimensions and the latter, because it happens
that our consciousness moves intermittently in one direction along the latter
from the beginning to the end of our lives.®!

With a mysterious machine he has constructed, a device only vaguely described by
Wells, the Time Traveller propels himself into the future, where he lands in the year
802701. The main narrative involves his gradual discovery of the nature of the society
he finds there and, ultimately, his dramatic escape from it. Wells’s story, influenced
by aspects of Darwin and Marx, is essentially a comment on class struggle in the late
nineteenth century.®? In The Time Machine the fourth dimension proved its versatility,
serving as a temporal vehicle that allowed Wells to express his social theory.

Wells employed a purely spatial fourth dimension in two other tales of 1895, “The
Remarkable Case of Davidson’s Eyes” and The Wonderful Visit. By means of a “kink
in space” Davidson is able to observe events on an island in the South Seas while
still in London. For this to occur, two three-dimensional worlds must be folded together
in four-dimensional space just as corners of a two-dimensional napkin may be joined
in three-dimensional space.®® The Wonderful Visit is likewise based on the idea of
separate adjacent three-dimensional worlds, but in this case an angel falls out of his
heavenly world into an English country village.3* By implication, the angel is also
aware of the true four-dimensional nature of things and, much like the omniscient
Sphere in Flatland, emphasizes by contrast the pettiness and limited outlook of the
villagers.

In his 1896 “The Plattner Story” Wells relied on the frequently discussed notion

81 From the hyperspace philosophy of Hinton and
other contemporary sources Wells would have learned
of the interrelationship of time and space in the fourth
dimension. In fact, a brief note by “S.,” published in
Nature in 1885, had described explicitly the idea of
time as a fourth dimension in which the motion of a
cube would create a “sur-solid” in “time-space.” See
“S.,” “Four-Dimensional Space,” Nature, xxx1 (26 Mar.
1885), 481. Interested in the fictional possibilities of
time travel, Wells in this one instance resurrected the
d’Alembertian definition of the fourth dimension as
time itself. Wells’s reference to “duration” suggests
that time held a further appeal for him as an aspect
of the contemporary theories of Henri Bergson. On
Wells and Bergson, see Philmus and Hughes, H. G.
Wells, pp. 48-49, n. 4. For Bergson’s negative view of
a spatial fourth dimension, see the section of Chapter

2 following n. 200.

In the version of The Time Machine published in
The New Review Wells had included a discussion of a
“Rigid Universe” with three dimensions of space and
one of time. In this section, omitted from the final
Heinemann text of The Time Machine, Wells was
uncannily close to Minkowski’s vision of an overall
continuum of space-time that encompasses the “world-
lines” of every individual. For this text, “The Inventor,”
see Philmus and Hughes, H. G. Wells, pp. 91-95.

8 Bergonzi, The Early H. G. Wells, p. 46.

8 Wells, “The Remarkable Case of Davidson's Eyes”
(1895), in The Country of the Blind and Other Stories
(London and New York: T. Nelson & Sons, [1913]),
pp- 99-100. Hinton had discussed this property of higher
space as early as 1880 in his article “What [s the Fourth
Dimension?”

8 Wells, The Wonderful Visit (London and New York:
Macmillan & Co., 1895), p. 26.
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of three-dimensional symmetry and an object’s ability to turn through itself in the
fourth dimension. Thus, Gottfried Plattner, an unfortunate science teacher blown
away by an explosion of his chemicals, returns from a visit to a misty other world
with his heart on his right side. Finally, the mad scientist who has become The Invisible
Man (1897) owes his invisible status to “a formula, a geometrical expression involving
four dimensions.”® In this case Wells followed the lead of Hinton, who in 1895 had
published a scientific romance about an invisible girl, Stella. Her invisibility had been
produced by the reduction of her “coefficient of refraction” to zero, a process with
strong overtones of the fourth dimension.

During the 1890s several of Wells’s literary contemporaries working in Britain
invoked the fourth dimension, further attesting to its popularity by this time. In Oscar
Wilde’s irreverent spoof of ghost stories, “The Canterville Ghost” of 1891, “the fourth
dimension” is the target of Wilde’s humor, along with members of the “Psychical
Society” and all others who have ever taken supernatural phenomena seriously. Of
his long-suffering ghost, whom the new American tenants of Canterville chose simply
to take in stride, Wilde writes at one point, “There was evidently no time to be lost,
so hastily adopting the Fourth Dimension of Space as a means of escape, he vanished
through the wainscoting and the house became quiet.” Charles Dodgson’s friend
George Macdonald used a spatial fourth dimension with heavenly associations as a
central theme in his Lilith of 1895. Macdonald’s Adam figure, Mr. Raven, travels back
and forth from another world through a secret garret in which he arranges mirror
reflections to produce an opening in space. Mr. Raven himself had learned of higher
dimensions from “old Sir Up’ard,” whom Macdonald may well have named as a result
of the litany of the Square in Flatland, “Upward, yet not Northward,” as he struggled
to comprehend the third dimension. Joseph Conrad and Ford Madox Hueffer (later
Ford Madox Ford) based their 1901 novel The Inheritors on a fourth dimension. Their
“inheritors” were a superhuman, but cruel and unfeeling, race from the Fourth Di-
mension, who were gradually taking over the world.%¢

Among these authors, however, Wells was the writer most committed to the fourth
dimension. Through the 1920s he continued to seek a literary “fourth dimension,”

85 Wells, “The Plattner Story” (1896), in The Coun- Dodd, Mead & Co., 1895), ch. 8; Abbott, Flatland,

try of the Blind, pp. 307-8; Wells, The Invisible Man:
A Grotesque Romance (London: C. A. Pearson, 1897),
p. 144.

86 Wilde, “The Canterville Ghost,” in Lord Arthur
Savile’s Crime and Other Stories (London: James R.
Osgood, Mcllvaine & Co., 1897), reprinted in The
Works of Oscar Wilde, 15 vols. (New York: Lamb Pub-
lishing Co., 1909), 1v, 103-4; Macdonald, Lilith: A
Romance (London: Chatto & Windus, 1895; New York:

p. 141; Conrad and Hueffer, The Inheritors: An Ex-
travagant Story (London: W. Heinemann, 1901). In
contrast to the group of writers discussed here, Rudyard
Kipling in his short story “An Error in the Fourth
Dimension” uses the term offhandedly to emphasize
the gravity of his hero’s social error of stopping a train
en route. See Kipling, “An Error in the Fourth Di-
mension,” The Cosmopolitan (New York), xviur (Dec.
1894), 212-21.
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now reinterpreted by him as a transcendence of the conventions of fiction, in tune
with the space-time world of Einstein’s General Relativity.®” At the turn of the century
Wells was undoubtedly the most widely known figure to be associated with the fourth
dimension. In the United States his books were often published simultaneously with
the English first edition, and in France each of Wells’s tales involving the fourth
dimension, except “The Plattner Story,” had been translated and published by the
early years of the twentieth century.

“The fourth dimension” became popular considerably later in France than in Eng-
land. By 1900, however, the concept had begun to emerge from more learned spec-
ulations about the nature of space, which were given a special impetus in France by
the controversy over geometrical axioms. Just as Poincaré’s writings on the nature of
geometrical axioms were central to the popularization of non-Euclidean geometry, so
his statements on the number of dimensions of space lent prestigious support to the
cause of “the fourth dimension” in France.

Although in De l'intelligence of 1870 Hippolyte Taine had argued in a positivist vein
against the existence of a fourth dimension of space,® and Helmholtz’s denials of the
possibility of representing the fourth dimension were known in France through trans-
lations of his works, complete denials of the possibility of higher dimensions were far
more rare. An important factor in this more moderate attitude was undoubtedly the
recognition that there is more than one kind of space: geometric space and perceptual
space, or physiological space as Ernst Mach termed it, are separate entities. Mach had
mentioned this distinction in his Analysis of the Sensations of 18868 and was to devote
his 1906 book, Space and Geometry, to the study of physiological space. More impor-
tantly, in France this differentiation between the spaces of geometry and of perception
was emphasized in the writings of Poincaré as early as 1895. Poincaré characterized
geometric space as follows: “l. It is continuous; 2. It is infinite; 3. It has three
dimensions; 4. It is homogeneous, that is to say, all points are identical one with
another; 5. It is isotropic, that is to say, all the straights which pass through the same
point are identical one with another.” In contrast, perceptual space is made up of
three component spaces, visual, tactile, and motor, which are neither continuous,
infinite, homogeneous, nor isotropic. Of perceptual space, “one cannot even say that
it has three dimensions.”® For both Poincaré and Mach, a third type of space was
also implied, the space of our universe beyond our immediate perception.

87 On this subject, see William ]J. Scheick, “The p. 197.

Fourth Dimension in Wells’s Novels of the 1920s,” 8 Mach, Contribution to the Analysis of the Sensations
Criticism: A Quarterly for Literature and the Arts, xx (1886), trans. C. M. Williams (Chicago: Open Court
(Spring 1978), 167-90. 1897), p. 171.

8 Jouffret, Mélanges de géométrie a quatre dimensions, % Poincaré, La Science et Ihypothése (Paris: Emest
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In the light of this more sophisticated analysis of space, Helmholtz’s single space,
which gives rise through perception to a certain geometry that, in turn, reflects the
geometry of the universe, is too simplistic. Poincaré’s arguments against the possibility
of an empirical proof of the Euclidean or non-Euclidean nature of the universe can
now be seen to rest as well on this distinction of various types of spaces. Instead of
geometric space being a direct result of our perceptions, as Helmholtz maintained, for
Poincaré it is an idealized space based on axioms that are merely conventions, just as
the geometrical model we adopt for the universe is a convention.?! Poincaré’s denial
of an empirical proof for the Euclideanism or non-Euclideanism of the universe also
applies to the question of how many dimensions it has, and thus leaves open the
possibility of a four-dimensional world.

Poincaré’s discussions of the fourth dimension dealt primarily with perceptual space,
however. Here his conventionalist philosophy gave him a freedom disallowed by the
strict positivism of Helmholtz, for whom the three dimensions of space were assured
by the certainty of experience and a fourth dimension was unimaginable. Yet, in the
words of Poincaré, “experience does not prove to us that space has three dimensions;
it only proves to us that it is convenient to attribute three to it.”? And furthermore,
“a person who should devote his existence to it might perhaps attain to a realization
of the fourth dimension.”?

According to Poincaré, our notions of visual, tactile, and motor space are generated
through associations among sensations, which are developed through personal expe-
rience and heredity. Because these associations have become customary, it is difficult,
though possible, to break them apart. If, for instance, the two muscular sensations of
accommodation and convergence of the eye, which normally function together in one
series, were to vary independently of one another, the “complete visual space” to
which they give rise would have four instead of three dimensions. Pursuing this line
of thought, Poincaré makes a statement that must have intrigued the Cubists and
their generation: “From this point of view, motor space would have as many dimensions
as we have muscles.”**

Flammarion, 1902), pp. 69, 74; trans. George Bruce 92 Poincaré, La Valeur de la science (Paris: Ernest

Halsted in Poincaré, The Foundations of Science: Science
and Hypothesis, The Value of Science, Science and Method
(New York: The Science Press, 1913), pp. 66-67, 70.
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Flammarion, 1904), p. 125; The Foundations of Science,
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Foundations of Science, p. 69. See La Science et I'hy-
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Poincaré developed his theories on the process of spatial perception further in La
Valeur de la science of 1904 and presented his most complete discussion in the 1908
Science et méthode. His concluding remarks in this text lent further support to the case
for higher dimensional space: “So the characteristic property of space, that of having
three dimensions, is only a property of our table of distribution, an internal property
of human intelligence, so to speak. It would suffice to destroy certain of these con-
nections, that is to say of the association of ideas to give a different table of distribution,
and that might be enough for space to acquire a fourth dimension.”*

After the publication of Science et méthode, however, Poincaré’s views on the fourth
dimension became more conservative. Through his work in analysis situs, the forerunner
of modern topology, Poincaré believed he had found an explanation for the seeming
necessity of three dimensions for the mathematical continuum (geometric space), as
well as the physical continuum (perceptual space). Using the topological notion of
“cuts,” Poincaré pointed out that every continuum of n dimensions is cut or divided
completely by a continuum of n-1 dimensions: a line by a point, a surface by a line,
and a space by a surface. For space, the surface that cuts it into two absolutely separate
parts has two dimensions, so space in this respect must have three dimensions.*
Poincaré’s conclusions to this effect were published in the Revue de Métaphysique et de
Morale in 1912, the year of his death, and, posthumously, in Derniéres Pensées of 1913.
Despite these later conclusions, the more liberal views Poincaré had expressed in his
writings of the first decade of the century provided vital support for Frenchmen in-
terested in higher spatial dimensions.

Poincaré’s conventionalist attitude toward spatial dimensions was part of an in-
creasing recognition toward the end of the nineteenth century that sense perceptions
were relative.” Ironically, for Poincaré and others the non-Euclidean geometry upon
which Helmholtz had earlier based his empirical philosophy was an important support
for the new relativist, antipositivist attitude toward spatial perceptions. The very model
of two-dimensional beings on a sphere that Helmholtz had posited, now generalized
to a two-dimensional Flatland in explanations of the fourth dimension, was employed
to demonstrate the limits of sense perception. In the Revue Scientifique, for example,
a May 1897 article by Sir William Crookes, “De la relativité des connaissances hu-
maines,” used the example of a “homunculus” on a cabbage leaf to show that the size
of an observer will radically alter his interpretation of an event. Two months later
Gaston Moch, in a similarly titled article, compared the perceptions of Crookes's

95 Poincaré, Science et méthode (Paris: Ernest Flam- Mathematics and Science: Last Essays (Derniéres Pensées)
marion, 1908), pp. 117-18; The Foundations of Science, (New York: Dover Publications, 1963), pp. 28-31.
p. 426. 97 See Appendix A below for Poincaré’s “law of rel-

9 Poincaré, Derniéres Pensées (Paris: Ernest Flam- ativity” for space, which he set forth in La Science et

marion, 1913), pp. 63-70; trans. John W. Bolduc as Uhypothése of 1902 (p. 96).
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homunculus specifically to those of a dweller in a two-dimensional world with no idea
of a third dimension, or of a three-dimensional being who refused to admit the
possibility of space of n dimensions.%

A 1903 Revue Scientifique article by Maurice Boucher, “La Relativité de I'espace
euclidien,” is typical of several such articles based on non-Euclidean geometry, which
were generated by the French debate about the nature of geometrical axioms in the
1890s. Boucher's spatial relativism also extended to higher dimensions, and he was
an important French advocate of the fourth dimension in this period. His Essai sur
I’hyperespace of 1903 argues the very strong possibility of higher-dimensional space and
explores the scientific and philosophic consequences of a fourth dimension. Through-
out Boucher is supported by his firm belief in the relativity of knowledge: “Our senses,
on the whole, give us only deformed images of real phenomena, some of which have
long remained unknown, because none of our organs put us in direct contact with
them. . . .”®

Boucher’s work represents a more scientific hyperspace philosophy than that of
Hinton. Although he drew upon Hinton’s pioneering writings on the fourth dimension,
Boucher himself had published articles in the Revue Scientifique, and his discussions
of the possible relation of atomic theory, gravitation, and the ether to the fourth
dimension have less a quality of pseudoscience than had Hinton’s personal theories. 1%
Boucher’s twentieth-century hyperspace philosophy benefits from a science which,
unlike strict positivism, was willing to admit the validity of the fourth dimension as
a hypothetical concept.

Possible scientific applications of a fourth dimension of space had been discussed in
the Revue Scientifique as early as 1891 in an article by René de Saussure. In “Sur une
maniére de considerer les phénoménes physiques et chimiques,” de Saussure proposed
that a “pression-chaleur” or “heat pressure” in the direction of the fourth dimension
might be the underlying cause of the phenomena of light, heat, and electricity. !
Serious scientific discussions of the fourth dimension such as that of de Saussure are

% See Crookes, “De la relativité des connaissances the particles rest (Boucher, Essai, pp. 154-56). An

humaines,” Rewue Scientifique, 4th ser., vu (15 May
1897), 609-13; Moch, “Sur la relativité des connais-
sances humaines,” Revue Scientifique, 4th ser., viu (24
July 1897), 104-8.

9 See Boucher, “La Relativité de l'espace eucli-
dien,” Revue Scientifique, 4th ser., xx (25 July 1903),
97-108; Boucher, Essai sur 'hyperespace, p. 64.

10 Boucher quotes at one point from the 1898 French
edition of Walter William Rouse Ball's Mathematical
Recreations and Problems of Past and Present Times (1892),
citing Ball’s theory that gravitational attraction be-
tween particles might be explained if the ether were
a four-dimensional homogeneous elastic body on which

earlier chapter in Ball's book, “Hyperspace,” sum-
marizes contemporary popular views of the fourth di-
mension like those of Hinton, providing yet another
possible source of this information for interested French
readers. See Ball, Recréations et problémes mathématiques
des temps anciens et modernes, trans. ]. Fitz-Patrick,
from English 3rd ed. rev. (Paris: Hermann, 1898). The
theories of Ball, as well as Hinton and others, are
discussed in Alfred M. Bork, “The Fourth Dimension
in Nineteenth-Century Physics,” Isis, Lv (1964), 326-
38.

100 See Revue Scientifique, 3rd ser., xrvit (9 May
1891), 585-88.
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certain evidence that a move away from strict positivism was occurring in science
toward the end of the nineteenth century.

By the time Maurice Boucher was writing in the early years of the twentieth century,
science in general had developed beyond the stage when the label “positivist” could
be applied to the majority of its practitioners. With the increase at the end of the
nineteenth century in scientific research that could not be readily “sensed,” the tra-
ditional positivist view was no longer tenable. Also, positivism as a philosophy of
science had itself evolved, largely through the influence of Mach and his “pragmatic-
economical” view of the human mind.'” Mach’s interpretation recognized that the
scientist is not an objective recorder of the facts he observes; instead, he unconsciously
orders the results of his observations in the ways that best suit his needs and interest
and which are the simplest and most economical. While Mach maintained positivism’s
belief that observation and experiment are the proper activities of the scientist, he
admitted that the scientist’s results might well be influenced by the ways he personally
tended to organize aspects of his own experience.

The changes in science toward the end of the nineteenth century which undermined
direct observation as the universal scientific method soon encouraged a radical exten-
sion of the pragmatic-economical view. The central role in science, which had be-
longed to experience, was taken over by the creative activity of the scientist in his
formulation of hypotheses. Of this more extreme approach to science as basically
theory construction and, to a lesser extent, of Mach’s pragmatic-economical view,
Maurice Mandelbaum has written. “Neither held it to be within the scope of science
(nor within the power of man) to say that one set of constructs more nearly approx-
imated the characteristics of nature than did another: the test of the adequacy of a
scientific theory lay wholly within the results which could be obtained by ordering
past and future experiences in terms of that theory.”'® Poincaré’s conventionalist
views discussed in this chapter are a prime example of this last stage of nineteenth-
century positivism, now transformed into creative theory building and sharing ideal-
ism’s affirmation of individual freedom and creativity. 104

Poincaré was to become a popular intellectual hero for the French during the early
years of the twentieth century. His three major books on his philosophy of science,

102 Mandelbaum, History, Man and Reason, pp. 16-
19, 305-10.

13 [bid., p. 19.

14 Ibid., p. 9. Because positivism had changed so
substantially from its original tenets by the beginning
of the twentieth century, the unqualified use of the
term for this era can cause a great deal of confusion.
Although historically Poincaré can be placed within

the broad range of positivism’s development, his con-
temporaries, such as Boucher and especially the French
artistic avant-garde, did not associate him with posi
tivism. In this and successive chapters, therefore, the
term positivist is used only to describe the traditional,

sense-oriented position of positivism, represented by
Helmbholez.



NINETEENTH-CENTURY BACKGROUND [] 41

published in 1902, 1904, and 1908, were widely read and served as major vehicles in
the dispersion of knowledge about the new geometries. Non-Euclidean geometry was
Poincaré’s major concern, but his pronouncements on the fourth dimension had an
equally great impact on a period in which ideas about higher dimensions became a

widespread preoccupation.

Codification of the Fourth Dimension in the Early Twentieth Century:
The 1909 Scientific American Contest

Popular literature on the new geometries during the first decade of the twentieth
century focused primarily on “the fourth dimension” as opposed to non-Euclidean
geometry. Between 1900 and 1910 the various notions about the fourth dimension
advanced in the previous century had coalesced into a body of knowledge familiar to
more and more of the public. This phenomenon is most apparent in the United States,
where an abundance of popular magazines provided a natural arena for talk of this
latest novelty. The Popular Science Monthly and Science had already begun featuring
articles on the new geometries toward the end of the nineteenth century; the twentieth
century saw the proliferation of articles on the subject in magazines such as Harper’s
Weekly, McClure’s, and Current Literature.'® The excitement in the United States
culminated in 1909 when Scientific American sponsored an essay contest for “the best
popular explanation of the Fourth Dimension,” and entries were received from all
over the world. 1%

The contest instructions had stated that the object was “. . . to set forth in an essay
not longer than twenty-five hundred words the meaning of the term so that the ordinary
lay reader could understand it.”'7 The fourth dimension is interpreted by all of the
entrants as a spatial phenomenon; time as the fourth dimension is not even mentioned.
Most of the contestants are quite detached and noncommital about whether a fourth
dimension exists, with only a few hyperspace philosophers among them advocating
its reality.!%® Nevertheless, all of the essays borrow heavily from Hinton, who had

of n dimensions had been published (p. viii) is all the

105 A chronological listing of these American arti-
more noteworthy, for the number would be far greater

cles is provided in Appendix B, with full data in the

Bibliography, sec. I, B, 4. Because Sommerville’s con-
centration in his Bibliography of Non-Euclidean Ge-
ometry was upon more scholarly publications, few of
these articles appear in his Bibliography. Instead, they
are to be found in the Readers’ Guide to Periodical Lit-
erature and other periodical indexes under “Fourth Di-
mension.” In view of this fact, Sommerville’s state-
ment that by 1910, 1,832 works relating to the geometry

had the more popular articles been included.

106 The editor of the published collection of these
essays, Henry Parker Manning, mentions entries from
Turkey, Austria, Holland, India, Australia, France,
and Germany. See Manning, ed., The Fourth Dimen-
sion Simply Explained, p. 3.

107 [bid., p. 3.

18 One of these hyperspace philosophers was the



42 [J NINETEENTH-CENTURY BACKGROUND

formulated for the first time so many of the possible ways of understanding the fourth
dimension.

The two-dimensional analogy that emerged in England, immortalized in Abbott
Flatland, plays a major role, as do Hinton’s discussions of four-dimensional tesseracts
bounded by cubes and of three-dimensional symmetry with objects being turned through
a fourth dimension. Several authors also suggest the possibility of several three-di
mensional worlds coexisting in a four-dimensional space. As H. G. Wells had dis
covered earlier, surprising effects would result if two of these separate worlds were
brought into contact by a folding action like that with two corners of a piece of paper,
representing analogous two-dimensional worlds in a greater three-dimensional space.
Finally, Stringham’s definitive work on the geometrical characteristics of the four
dimensional hypersolids fueled the more mathematical discussions, with contestants
presenting tables listing the vertices, edges, and faces of the six hypersolids.

Most authors who mention Zéllner and his work with Slade portray the spiritualist
connection as an unfortunate connotation taken on at times by the fourth dimension.
The American contestants do not reflect the substantial contemporary interest in
mystical or even Theosophical aspects of higher dimensions. Little impressed by Zoll-
ner’s pseudoscience, the essayists prefer to cite the “latest” scientific evidence for the
possible existence of a fourth dimension. No reference to Einstein or Minkowski occurs,
however, even though Minkowski had formulated the four-dimensional space-time
continuum in 1908. Instead, “scientific” evidence consists of recent speculation on
the nature of the ether and on atomic theory, along with certain of Hinton's personal
ideas.

The mysterious ether had long permitted a good deal of hypothesizing for open-
minded scientists, and it was a natural place for the fourth dimension to find its way
into science. Often the actual scientific pronouncements of this era sound little less
fantastic than Hinton’s explanation of electricity as a four-dimensional vortex in the
ether. Such is the case with Karl Pearson’s “ether-squirts” theory, which suggested
that the atom is a point at which ether is pouring into our space from a space of four
dimensions.!® Perhaps the most convincing scientific connection for the fourth di-

American architect and designer Claude Bragdon, whose Recreations and Problems of Past and Present, as well &
essay and subsequent publications are discussed in ch. Bork, “The Fourth Dimension in Nineteenth-Century
4. Physics,” pp. 334-35. Although none of the Scientfic

109 Carl A. Richmond, “How the Fourth Dimension American essayists mentions the possible link between
May Be Studied,” in The Fourth Dimension Simply Ex- gravitation and the fourth dimension, Ball had don¢
plained, ed. Manning, p. 90. On “ether squirts,” see so in Mathematical Recreations in connection with the
Walter William Rouse Ball, Mathematical Recreations ether, and this association was often made in populdf

and Essays, 5th ed. (London: Macmillan & Co., 1911), literature.
p. 465, an updated version of Ball’s 1892 Mathematical
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mension was in the field of chemistry. Chemists had long been puzzled by the problem
of isomerism, where molecules of identical composition have different properties. It
was now suggested that four-dimensional space would provide an extra point that could
be positioned independently from the four points whose distances can be mutually
independent in three-dimensional space. !

With the aid of hyperspace philosophy, Theosophy, fantasies like Abbott’s Flatland,
and the science fiction of Wells and others, the fourth dimension had become almost
a household word by 1910. Non-Euclidean geometry never achieved such a widespread
popularity, in part because it did not lend itself to such a variety of interpretations.
Ranging from an ideal Platonic or Kantian reality—or even Heaven—to the answer
to all of the problems puzzling contemporary science, the fourth dimension could be
all things to all people. As a result, one of its most interesting aspects in early twentieth-
century art is the variety of ways in which the fourth dimension was understood and
then approached in visual terms by various artists in different countries.

110 Graham Denby Fitch, “An Elucidation of the Explained, ed. Manning, p. 50.
Fourth Dimension,” in The Fourth Dimension Simply



